
УНИВЕРЗИТЕТ У БЕОГРАДУ
МАТЕМАТИЧКИ ФАКУЛТЕТ

Роберт Т. Дожа

УГРАДЊА АЛГОРИТМА ЗА РАЗБИJАЊЕ
СИМЕТРИJА НАД ГРАФОВИМА У

РЕШАВАЧЕ ОГРАНИЧЕЊА

мастер рад

Београд, 2025.

Ментор:

др Милан Банковић, доцент
Универзитет у Београду, Математички факултет

Чланови комисије:

др Филип Марић, редовни професор
Универзитет у Београду, Математички факултет

др Весна Маринковић, ванредни професор
Универзитет у Београду, Математички факултет

Датум одбране:

Породици, пријатељима, папиру и морској соли

Наслов мастер рада: Уградња алгоритма за разбијање симетрија над гра-
фовима у решаваче ограничења

Резиме: Симетрије представљају значајан извор редундантности у комбина-
торној претрази графова, где многобројне изоморфне репрезентације једног
графа значајно увећавају простор претраге. Овај рад приказује један ал-
горитам за елиминацију симетрија провером лексикографске минималности
графа. Приказујемо имплеменитацију овог алгоритма и његову интеграцију
у оквиру SMT решавача ArgoSMT. Експерименталном евалуацијом приказу-
јемо резултате примене овог приступа при решавању проблема конструкције
графова са задатим бројем чворова, грана и троуглова. Резултати сугеришу
да додавање ограничења лексикографске минималности графа у одређеним
случајевима може значајно смањити време претраге.

Кључне речи: графови, SAT, SMT, програмирање ограничења, CDCL, лек-
сикографска минималност, симетрије

Садржај

1 Увод 1

2 Основе 3
2.1 Исказна логика . 3
2.2 SAT проблем . 4
2.3 Логика првог реда . 4
2.4 Теорије првог реда, SMT проблем 5
2.5 Графови . 6
2.6 Проблеми задовољења ограничења 7

3 Елиминација симетрија над графовима 9
3.1 Парцијални графови . 9
3.2 Индикаторски парови . 11
3.3 Партиције . 13
3.4 Опис алгоритма . 14

4 Имплементација 22
4.1 CDCL(T) архитектура . 22
4.2 Решавач ArgoSMT . 24
4.3 Руковалац graph_lex_min ограничења 24

5 Евалуација 27

6 Закључци и даљи рад 31

Библиографија 32

v

Глава 1

Увод

У многим комбинаторним проблемима, као што су бојење графова, распо-
ређивање ресурса или генерисање структура са одређеним својствима, јављају
се симетрије, односно одређене подударности између комбинаторних конфи-
гурација које се разматрају. Ово значи да се разматрају суштински исти
објекти више пута, што значајно увећава простор претраге. Због тога је од
значаја разматрати како решити овај проблем, односно извршити тзв. разби-
јање симетрија током претраге.

У овом раду, разматраћемо како се симетрије могу разбити током трагања
за графовима са одређеним својствима користећи решаваче ограничења. Код
графова, симетрије настају због чињенице да један граф може имати много
себи изоморфних графова, односно графова који су исти по структури, а
разликују се једино по обележавању чворова. На слици 1.1 приказан је при-
мер изоморфних графова. Циљ је, дакле, класу изоморфних графова свести
на једног њеног представника. Један начин да се то уради је да се у датој
класи посматра лексикографски минималан граф, односно граф који је нај-
мањи у смислу лексикографског поретка међу матрицама суседства графова.
Овај проблем је тежак, али је један алгоритам за утврђивање симетрија у
овом погледу развијен и описан у [8]. У наведеном раду, алгоритам за раз-
бијање симетрија над графовима је имплементиран у оквиру SAT решавача
[3]. Проблем генерисања графа је представљен исказном формулом чију за-
довољивост испитује SAT решавач, док алгоритам за разбијање симетрија
представља посебан модул који комуницира са SAT решавачем генерисањем
одговарајућих клауза. Овакав приступ код кога се процедура за резоновање
у специфичном домену комбинује са језгром које је одговорно за исказно ре-

1

ГЛАВА 1. УВОД

зоновање и претрагу је карактеристично за модерне SMT решаваче [3]. Ова
чињеница представља мотивацију за интеграцију алгоритма описаног у [8] у
SMT решавач.

Слика 1.1: Пример изоморфних графова. Сви приказани графови међусобно
су изоморфни.

Према томе, циљ овог рада је да се поменути алгоритам имплементира и
угради у конкретан SMT решавач заснован на CDCL(T) архитектури [3, 11].
Конкретно, алгоритам ће бити имплементиран у оквиру решавача ArgoSMT
[2] и биће отвореног кода. Приказаћемо начин на који се алгоритам уклапа
у архитектуру овог SMT решавача, као и ефекте разбијања симетрија овим
приступом на конкретним примерима.

Напоменимо да је у [8] коришћен динамички приступ елиминиацији симе-
трија, то јест елиминација се вршила „у ходу”, током претраге. Динамички
приступ је и раније коришћен у сличним применама [1, 5, 6, 7, 10]. Овај
приступ ћемо и ми применити. За разлику од њега, постоји и статички при-
ступ, где се унапред (пре почетка претраге) генеришу клаузе које елиминишу
симетрије међу графовима [4]. Методе засноване на статичком приступу су
најчешће непотпуне, тј. не обезбеђују потпуну елиминацију симетрија, с об-
зиром да би за тако нешто било неопходно унапред генерисати превелик број
клауза. Са друге стране, у динамичком приступу се клаузе генеришу лењо,
само када је то неопходно, што обично резултује знатно мањим бројем гене-
рисаних клауза.

Остатак рада има следећу структуру. У поглављу 2 дискутујемо основне
појмове и дефиниције које су релевантне за остатак рада. У поглављу 3
описујемо алгоритам MinCheck који служи за проверу минималности графа
тражењем тзв. индикаторских парова. Затим, у поглављу 4 описујемо начин
на који је овај алгоритам уграђен у решавач ArgoSMT. У поглављу 5 при-
казујемо резултате примене решавача ArgoSMT са додатим пропагатором на
неким инстанцама. На крају, у поглављу 6 дајемо кратак осврт на рад.

2

Глава 2

Основе

У овом поглављу следе основни појмови, ознаке и дефиниције који ће бити
коришћени у остатку рада.

2.1 Исказна логика

Исказним атомом сматрамо формулу у чију структуру не залазимо и
која може бити тачна или нетачна. Формуле исказне логике градимо од
исказних атома користећи исказне везнике (¬,∧,∨,⇒,⇔) на уобичајен начин.
Литералима називамо атоме или њихове негације. Клауза је дисјункција
литерала (за сваки од тих литерала кажемо да га клауза садржи). Формула
је у конјунктивној нормалној форми (КНФ) уколико је конјункција клауза.

Исказна валуација је функција v : X → {true, false}, где јеX скуп исказних
слова. Исказном валуацијом се атомима придружује истинитосна вредност
тачно (true) или нетачно (false), а тачност сложених формула се дефинише
индукцијом, применом исказних везника, на уобичајен начин. За исказни
атом p кажемо да је тачан при валуацији v уколико је v(p) = true, а нетачан
уколико је v(p) = false. Исказна валуација задовољава фомулу уколико је та
формула тачна при тој валуацији. Специјално, исказна валуација задовољава
формулу у КНФ уколико свака клауза формуле садржи литерал који је тачан
у тој валуацији. Исказна формула је задовољива уколико постоји валуација
која је задовољава.

3

ГЛАВА 2. ОСНОВЕ

2.2 SAT проблем

SAT проблем је проблем испитивања задовољивости исказне формуле. То
је један од централних проблема рачунарства. Имплементације алгоритама
за решавање SAT проблема називају се SAT решавачи. Модерни приступи
решавању SAT проблема засновани су на CDCL (енг. conflict driven clause
learning) алгоритму [3].

2.3 Логика првог реда

Логика првог реда представља уопштење исказне логике у којој се атоми
посматрају општије, као атомичне формуле, чија се структура сада разматра.
Иако формула првог реда дозвољава појаву променљивих и њихову кванти-
фикацију (квантификатори ∀-„за свако” и ∃-„постоји”), ми ћемо разматрати
базне формуле, то јест формуле без променљивих.

Дакле, синтакса логике првог реда се, за наше потребе, састоји од сим-
бола константи (које ћемо означавати a, b, c итд.), функцијских симбола
(које ћемо означавати са f , g, h, ...) и предикатских (релацијских) симбола
(које ћемо означавати са α, β, γ, ...). Терм може бити симбол константе или
може бити представљен функцијским симболом примењеним над неким под-
термовима (f(a, b), g (h(c), b, a), ...). Атомична формула је представљена пре-
дикатским симболом примењеним над термовима (α(f(a, b), c), β(b, h(a), c),
...) Сложене формуле добијају се применом исказних везника над атомичним
формулама.

Тачност (базне) формуле првог реда зависи од структуре у којој се та
формула интерпретира. Структура првог реда се састоји од домена и интер-
претација симбола константи, функцијских и релацијских симбола. Интер-
претације функцијских симбола су функције над доменом, док су интерпре-
тације релацијских симбола релације над доменом структуре. Специјално,
симболи константи се интерпретирају фиксираним елементима домена, док
се предикатски симболи арности нула интерпретирају као тачни или нетачни
и не зависе од вредности термова (они одговарају исказним атомима). Тач-
ност сложених формула се сада дефинише на исти начин као и у случају
исказне логике. За структуру кажемо да задовољава дату формулу (или да је
њен модел), ако је формула тачна у тој структури. Формула је задовољива у

4

ГЛАВА 2. ОСНОВЕ

логици првог реда ако постоји структура која је задовољава.

2.4 Теорије првог реда, SMT проблем

Теорија првог реда је одређена скупом структура првог реда које називамо
моделима те теорије. Формула првог реда је задовољива у теорији ако је тачна
у неком моделу те теорије. Она је ваљана у теорији ако је тачна у сваком
моделу те теорије. Теорија је одлучива ако је испитивање задовољивости
формула у тој теорији одлучиво, то јест ако постоји ефективна процедура која
за било коју формулу у коначном времену испитује задовољивост у теорији.
SMT проблем је проблем испитивања задовољивости формуле у некој теорији
првог реда. SMT решавачи су имплементације алгоритама за одлучивање
SMT проблема у некој одлучивој теорији.

Модерни SMT решавачи најчешће користе тзв. лењи приступ (енг. lazy
approach) за испитивање задовољивости [3]. Идеја овог приступа је раздва-
јање задатка на два нивоа. Формула првог реда у датој теорији се најпре
преводи у чисто исказну формулу (у тзв. исказну апстракцију), где се свака
атомична формула првог реда посматра као један исказни атом. На овом ни-
воу се користи SAT решавач да би се пронашла задовољавајућа исказна валу-
ација. Затим се врши провера задовољивости у теорији. Када SAT решавач
предложи валуацију (то јест скуп атома који би требало да буду тачни), та
валуација се шаље специјализованом теоријском решавачу (енг. theory solver)
који проверава да ли је она заиста задовољива у оквиру теорије. Ако је-
сте, добијамо модел и цела формула је задовољива. Ако није, теоријски
решавач враћа конфликт у облику клаузе који SAT решавач додаје у своју
претрагу, како би елиминисао ту немогућу комбинацију и наставио да тражи
нову. На овај начин, SAT решавач и теоријски решавач раде заједно - SAT
решавач се бави комбинаторном претрагом, док теоријски решавач обезбеђује
семантичку исправност у оквиру конкретне теорије. У пракси, SAT решавачи
исказну валуацију граде инкрементално, што омогућава теоријском решавачу
да детектује незадовољивост у теорији раније, пре него што парцијална иска-
зна валуација буде комплетирана. Такође, теоријски решавач има могућност
да активно учествује у изградњи задовољавајуће валуације тако што пре-
длаже литерале које треба додати у валуацију, на основу логичких последица
у теорији. Једна архитектура заснована на описаном приступу, на којој су

5

ГЛАВА 2. ОСНОВЕ

најчешће засновани модерни SMT решавачи, је CDCL(T) архитектура [11]
коју детаљније описујемо у поглављу 4.1.

2.5 Графови

Граф је математичка структура која описује систем објеката и веза из-
међу њих. Те објекте називамо чворовима, а везе гранама. Постоји много
различитих типова графова. Наш фокус у овом раду биће на неусмереним
графовима (тј. графовима код којих су везе, односно гране, симетричне). У
овом раду користићемо нотацију која је преузета из [8].

Формално, граф је уређени пар (V,E), где V представља коначан скуп
чворова, а E ⊆ V × V скуп грана. За граф G = (V,E), са V (G) и E(G) ћемо
означавати скупове V и E. Грану (u, v) ∈ E ћемо краће означавати са uv или
u− v. Ако је |V | = n, за неки природан број n ∈ N, онда ћемо сматрати да су
чворови нумерисани бројевима од 1 до n, односно да је V = {1, . . . , n}. Са Gn
ћемо означавати скуп свих графова са чворовима {1, . . . , n}.

Матрица суседства графа G ∈ Gn, у ознаци AG, представља квадратну
матрицу димензије n× n за коју важи:

(AG)u,v =

1, ако u− v ∈ E,

0, иначе

за свако u, v ∈ V . За u, v ∈ {1, . . . , n}, поље матрице AG у u-тој врсти и v-тој
колони означавамо са AG[u][v], док u-ту врсту означавамо са AG[u].

За граф G = (V,E) кажемо да је неусмерен ако за сваки пар чворова
u, v ∈ V важи да из (u, v) ∈ E следи да и (v, u) ∈ E. Лако се види да је граф
неусмерен ако и само ако је његова матрица суседства симетрична. Као што
је већ речено, у овом раду разматрамо искључиво неусмерене графове.

Пермутација коначног скупа је бијекција тог скупа на њега самог. Како
ћемо посматрати пермутације скупа чворова графова, означимо са Sn скуп
свих пермутација скупа {1, . . . , n}.

За два графа G,H ∈ Gn кажемо да су изоморфна, уколико постоји перму-
тација чворова π ∈ Sn која чува гране, односно за свака два чвора u, v ∈ V (G)

важи uv ∈ E(G) aко и само ако π(u)π(v) ∈ E(H).

6

ГЛАВА 2. ОСНОВЕ

Нека су G,H ∈ Gn два графа и нека је π ∈ Sn пермутација. Кажемо да
је граф H добијен пермутацијом π графа G ако је E(H) = {π(u)π(v) | uv ∈
E(G)} и то означавамо са H = π(G).

Нека су G,H ∈ Gn два графа. Кажемо да је граф G лексикографски мањи
од графа H, у ознаци G ≺ H, ако је низ AG[1]AG[2] . . . AG[n] лексикографски
мањи од низа AH [1]AH [2] . . . AH [n]. Граф G је лексикографски мањи или једнак
графу H, у ознаци G ⪯ H, ако важи G ≺ H или G = H. Граф G ∈ Gn је
лексикографски минималан (или ⪯-минималан) уколико важи G ⪯ π(G), за
сваку пермутацију π ∈ Sn.

2.6 Проблеми задовољења ограничења

Проблем задовољења ограничења (енг. constraint satisfaction problem (CSP))
је уређена тројка (X,D,C), где је X (коначан) скуп променљивих, D скуп
коначних домена тих променљивих и C је коначан скуп ограничења која је по-
требно да те променљиве задовоље. Решење CSP-а је додела променљивама
вредности из њиховог домена таква да су сва ограничења испуњена.

Алати који имплементирају алгоритме за решавање CSP проблема нази-
вају се CSP решавачима. CSP решавачи су засновани на претрази и пропа-
гацијама којима се простор претраге смањује на основу својстава ограничења
датог проблема. Поред коришћења CSP решавача, CSP проблеми се могу
решавати и свођењем на SAT или SMT проблем. Један приступ свођења на
SAT је да се у SAT решавач уграде пропагатори за специфична ограничења
који генеришу клаузе којима описују своје пропагације када се за њима јави
потреба. Овај приступ, познат и под називом лењо генерисање клауза (енг. lazy
clause generation (LCG) [9]), врло је сличан начину рада модерних SMT реша-
вача заснованих на CDCL(T) архитектури, као и приступу који је коришћен
у раду [8] за разбијање симетрија над графовима.

Симетрије у CSP-у настају када различите доделе представљају суштин-
ски исто решење. Симетрије променљивих настају када пермутације про-
менљивих дају еквивалентна решења, док симетрије вредности настају када
пермутације вредности дају еквивалентна решења. Присуство симетричних
решења није пожељна појава, јер она (у многим случајевима значајно) увећа-
вају простор претраге, а њихово разматрање не доводи до суштински нових
закључака. Као што је поменуто у уводној глави, разбијање симетрија је

7

ГЛАВА 2. ОСНОВЕ

приступ у којем се улаже труд да би се симтерије избегле и да би се уштедело
на временским и просторним ресурсима.

8

Глава 3

Елиминација симетрија над
графовима

У овом поглављу биће описан алгоритам који се користи у [8] за одређи-
вање минималности графа. Пре тога, увешћемо концепте специфичне за овај
алгоритам који су коришћени за његов опис.

3.1 Парцијални графови

Парцијални (или парцијално дефинисани) граф је уређена тројка G =

(V,D,U), где је V коначан скуп, а скупови D ⊆ V × V и U ⊆ V × V су
дисјунктни. За дати граф G = (V,D,U), са V (G), D(G) и U(G) означа-
вамо скупове V , D и U , редом. D је скуп дефинисаних грана, а U је скуп
недефинисаних грана. Интуитивно, дефинисане гране одговарају гранама у
стандардној дефиницији графа, док су недефинисане гране оне за које, у да-
том тренутку током формирања графа, не знамо да ли јесу или нису у графу.
За парцијалне графове ћемо (као и код „обичних” графова) сматрати да су
неусмерени, то јест да за све u, v ∈ V важи (u, v) ∈ D ако и само (v, u) ∈ D,
као и (u, v) ∈ U ако и само ако (v, u) ∈ U . Јасно, „обичан граф”, односно граф
G = (V,E) у смислу дефиниције из поглавља 2.5, можемо идентификовати
са парцијално дефинисаним графом G′ = (V,E, ∅). Зато те графове зовемо
и потпуно дефинисаним графовима. Као и раније, подразумеваћемо да, ако
је |V | = n, онда је V = {1, . . . , n}. Са Pn означавамо све парцијалне графове
са n чворова. Матрицу суседства парцијално дефинисаног графа G ∈ Pn

9

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

дефинишемо аналогно потпуном графу:

(AG)u,v =


1, ако u− v ∈ D,

⋆, ако u− v ∈ U,

0, иначе,

за све u, v ∈ V . Парцијални граф G ∈ Pn може се проширити до потпуног
графа H ∈ Gn ако важи D(G) ⊆ E(H) ⊆ D(G)∪U(G). Тада за H кажемо да је
проширење графа G. Са X (G) означавамо скуп свих проширења парцијално
дефинисаног графа G. За парцијалне графове такође можемо дефинисати
⪯-минималност. За парцијални граф G кажемо да је ⪯-минималан ако X (G)

садржи ⪯-минималан граф (у смислу дефиниције ⪯-минималности потпуних
графова дате у поглављу 2.5).

Како ћемо граф G ∈ Gn конструисати инкрементално, почевши од „пра-
зног” графа (n чворова без грана између њих), постепеним додавањем грана,
парцијални графови ће служити као природна репрезентација стања током
те конструкције. Наиме, недефинисане гране су оне за које још увек, у датом
тренутку, не знамо да ли се налазе у графу или не. Тако проширења теку-
ћег парцијалног графа представљају потпуне графове које од њега можемо
добити „додавањем” грана (прецизније, претварањем неких недефинисаних
грана у дефинисане и уклањањем осталих недефинисаних грана).

На слици 3.1 приказан је пример једног парцијално дефинисаног графа
G ∈ P4, а на слици 3.2 његова проширења. Можемо приметити да је граф
G минималан, јер има минимално проширење (на пример, најлевљи граф
приказан на слици 3.2).

1 2

3 4

Слика 3.1: Пример парцијално дефинисаног графа. Дефинисане гране пред-
стављене су пуним, а недефинисане гране испрекиданим линијама.

10

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Слика 3.2: Проширења парцијалног графа са слике 3.1

3.2 Индикаторски парови

Нека је G ∈ Pn парцијално дефинисан граф и нека је π ∈ Sn перму-
тација. За пар чворова (i, j) ∈ V × V кажемо да је (G, π)-једнак уколико
за свако H ∈ X (G) важи AH [i][j] = Aπ(H)[i][j]. Ово важи ако и само ако
важи (i, j) ∈ {(π(i), π(j)), (π(j), π(i))} или AG[i][j] = Aπ(G)[i][j] ̸= ⋆ [8]. За
пар чворова (i, j) ∈ V × V кажемо да је (G, π)-критичан уколико важи
(AG[i][j], Aπ(G)[i][j]) ∈ {(1, 0), (1, ⋆), (⋆, 0)}. Пар чворова (i, j) ∈ V × V је
(G, π)-индикаторски пар уколико је (G, π)-критичан и за сваки пар чворова
(i′, j′) < (i, j), при чему i′ < j′, важи један од наредна три услова:

1. (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))};

2. AG[i
′][j′] = 1;

3. Aπ(G)[i
′][j′] = 0.

За (G, π)-индикаторски пар (i, j) кажемо да је строг уколико важи AG[i][j] = 1

и Aπ(G)[i][j] = 0.
Интуитивно, ако је пар чворова (i, j) (G, π)-критичан, то значи да пер-

мутацијом π можемо потенцијално „лексикографски смањити” поље AG[i][j].
Међутим, у том случају, пермутација π не мора нужно водити ка мањим гра-
фовима, јер њеном применом можемо „покварити” претходна поља матрице
суседства (поља AG[i

′][j′], где је (i′, j′) лексикографски мањи пар од (i, j)).
Додатни услови који дефинишу индикаторски пар обезбеђују да, уз то, па-
рови чворова лексикографски мањи од (i, j) нису „покварени” пермутацијом,
односно да је пар (i, j) индикатор неминималности графа G. Илуструјмо ове
појмове кроз наредни пример. На слици 3.3 приказан је један парцијално

11

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

дефинисан граф G ∈ P4, као и графови добијени од G пермутацијама:

π1 =

(
1 2 3 4

2 4 3 1

)
и π2 =

(
1 2 3 4

3 4 1 2

)
.

На истој слици су приказане и матрице суседства ових графова. Пар чворова
(1, 4) (на слици означен у матрицама суседства) је (G, π1)-критичан. Приме-
тимо да тај пар није (G, π1)-индикаторски пар, јер за пар чворова (1, 3) не
важе услови 1 - 3. С друге стране, пар (1, 4) јесте (G, π2)-индикаторски пар
(и то строги).

1

2 3

4

G

1

2 3

4

π1(G)

1

2 3

4

π2(G)

AG =


0 1 ⋆ 1
1 0 0 ⋆
⋆ 0 0 ⋆
1 ⋆ ⋆ 0

 Aπ1(G) =


0 1 ⋆ ⋆
1 0 ⋆ 1
⋆ ⋆ 0 0
⋆ 1 0 0

 Aπ2(G) =


0 ⋆ ⋆ 0
⋆ 0 1 ⋆
⋆ 1 0 1
0 ⋆ 1 0


Слика 3.3: Графови G, π1(G) и π2(G) и њихове матрице суседства. Пар (1, 4)
није индикаторски пар у односу на π1, али јесте у односу на π2.

Важи следећа теорема.

Теорема. Нека је G ∈ Pn. Ако постоји строги (G, π)-индикаторски пар за
неко π ∈ Sn, онда G није ⪯-минималан. Додатно, ако је G потпун граф
и није ⪯-минималан, онда постоји строги (G, π)-индикаторски пар за неко
π ∈ Sn.

Доказ видети у [8].

12

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

3.3 Партиције

Генерализоване уређене партиције (енг. generalized ordered partitions) пред-
стављају помоћни објекат који служи за одређивање пермутација и индика-
торских парова. Формално, то је листа [(V1, l1, u1), . . . , (Vk, lk, uk)] где су Vi,
i ∈ {1, . . . , k} дисјунктни скупови за које важи V1 ∪ · · · ∪ Vk = V , а li и ui,
i ∈ {1, . . . , k}, такви да важи l1 = 1 и uk = n, затим ui + 1 = li+1 за свако
i ∈ {1, . . . k − 1}, као и |Vi| = ui − li + 1, за свако i ∈ {1, . . . , k}.

Генерализоване уређене партиције (које ћемо звати и само партиције) се
користе за репрезентацију „парцијално дефинисаних пермутација” чворова
графа. Прецизније, оне одређују фамилију пермутација, коју на одређени
начин можемо инкрементално сужавати. На тај начин постепено дефинишемо
пермутацију чворова. Формално, са Perm(P) означавамо све пермутације које
асоцирамо са партицијом P : ако је функција f : V → {1, . . . , n} таква да важи
f(v) = i ако и само ако v ∈ Vi, онда је

Perm(P) = {π ∈ Sn | lf(v) ≤ π(v) ≤ uf(v), за свако v ∈ V }.

На пример, ако је P = [({1, 5}, 1, 2), ({4}, 3, 3), ({2, 3, 6}, 4, 6)], онда је Perm(P)

скуп свих пермутација π за које важи π(1), π(5) ∈ {1, 2}, π(4) = 3 и π(2), π(3),

π(6) ∈ {4, 5, 6}. Приметимо да је Perm ([({1, . . . , n}, 1, n)]) = Sn, за свако n ∈ N.
Нека је P генерализована уређена партиција која има наредни облик:

[. . . , (Vi−1, li−1, ui−1), (Vi, li, ui), (Vi+1, li+1, ui+1), . . .]

Кажемо да је партиција P ′ добијена од P раздвајањем Vi на V ′
i и V ′′

i , где су
V ′
i и V ′′

i дисјунктни скупови и важи V ′
i ∪ V ′′

i = Vi, ако P ′ има облик

[. . . , (Vi−1, li−1, ui−1), (V
′
i , li, li + |Vi| − 1), (V ′′

i , li + |Vi|, ui), (Vi+1, li+1, ui+1), . . .] .

У овој дефиницији дозвољавамо да неки од скупова V ′
i и V ′′

i буде празан. У
том случају дефинишемо да је P ′ = P . Ако је P партиција, где је Vi скуп у
некој од њених тројки, и ако је V ′

i ⊆ Vi, онда ћемо са P [Vi → V ′
i] означавати

пермутацију добијену од P раздвајањем скупа Vi на V ′
i и Vi \ V ′

i . Јасно је
да важи Perm(P [Vi → V ′

i]) ⊆ Perm(P). При томе, једнакост важи уколико
је V ′

i = ∅ или V ′
i = Vi. Другим речима, раздвајањем тројки у партицији

сужавамо скуп пермутација које она одређује. Казаћемо и да сужавамо
партицију на овај начин.

13

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

Индикаторски парови неког графа су одређени не само тим графом, већ и
пермутацијом његових чворова. Наиме, за фиксирани граф G ∈ Pn, пар чво-
рова (i, j) може бити (G, π1)-индикаторски пар за неку пермутацију π1 ∈ Sn,
а да није (G, π2)-индикаторски пар, за неку другу пермутацију π2 ∈ Sn (ово
је илустровано на слици 3.3). Према томе, потрага за индикаторским паром
у једном парцијалном графу је у неком смислу претрега скупа пермутација
Sn. Партиције и њихово сужавање управо представљају кључан механизам
за инкрементално формирање пермутације у оквиру алгоритма провере ми-
нималности графа. О томе ће бити више речи у наредном поглављу.

3.4 Опис алгоритма

У овом поглављу разматрамо алгоритам за проверу минималности графа
који је описан у раду [8]. Он је заснован на рекурзивној процедуриMinCheck.
Ова процедура користи генерализовану уређену партицију скупа чворова
графаG и њеним систематским трансформацијама тражи (G, π)-индикаторске
парове, при чему су валидне пермутације π одређене том партицијом. Уко-
лико процедура не врати ниједан индикаторски пар, не можемо ништа закљу-
чити о графу (што значи да једноставно настављамо са претрагом). Уколико
процедура пронађе индикаторски пар, генерише се одговарајућа клауза [8].
У оригиналном раду [8], ова клауза је прослеђивана SAT решавачу као кла-
уза коју решавач треба да научи. У контексту SMT решавача, та клауза се
користи за закључивање конфликта у теорији или за теоријску пропагацију.
Процедуру MinCheck и генерисање клауза детаљније описујемо у наставку.

Процедура MinCheck

Процедура је заснована на сужавању партиција раздвајањем тројки уну-
тар њих (поглавље 3.3). Прво ћемо дати неформалан опис процедуре. На
почетку имамо партицију [(V, 1, n)] која представља све могуће пермутације и
почињемо претрагу од првог реда матрице суседства. Постепено пролазимо
кроз редове матрице суседства, а у сваком реду матрице, текућа партиција
се сужава фиксирањем чворова при индукованим пермутацијама (на основу
вредности матрице суседства у текућем реду), све док не пронађемо неки ин-
дикаторски пар. Ако систематски исцрпимо све могућности и при томе не
пронађемо индикаторски пар, излаз из процедуре је nil.

14

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

Сада ћемо формално описати алгоритам ове процедуре. Улаз у процедуру
представљају парцијално дефинисани граф G ∈ Pn (то јест његова матрица
суседства), генерализована уређена партиција P и текући ред r у матрици
суседства (r ∈ {1, . . . , n}). Излаз из процедуре је (G, π)-индикаторски пар
уколико је пронађен, заједно са пермутацијом π за коју је пронађен или nil

уколико није пронађен индикаторски пар.
Приликом позива процедуре за дато r, разматрамо r-ти скуп чворова у

партицији, Vr. За свако v ∈ Vr сужавамо партицију P тако што фиксирамо
π(v) = r. Прецизније, трансформишемо P у партицију Pv тако да за све
пермутације π ∈ Perm(Pv) важи π(v) = r. Ову трансформацију ћемо описати
кроз посебну процедуру, Adapt. Уколико при тој трансформацији закључимо
да имамо индикаторски пар (i, j) за неку пермутацију из Perm(Pv), процедура
Adapt гарантује да је (i, j) (G, π)-индикаторски пар за било коју пермутацију
π ∈ Perm(Pv) [8], па враћамо (i, j) и π и завршавамо процедуру. У супрот-
ном, ако смо добили партицију Pv за коју не можемо закључити да имамо
индикаторски пар, онда за ту партицију рекурзивно позивамо MinCheck, за
наредни ред у матрици (ред r + 1). Уколико тај рекузривни позив резултује
индикаторским паром и неком пермутацијом, враћамо тај индикаторски пар
и ту пермутацију, а уколико не, прелазимо на следећи чвор v ∈ Vr.

Ако ни за један чвор v ∈ Vr не пронађемо индикаторски пар, процедура
враћа nil. Излаз из рекурзије процедуре MinCheck представља ситуацију
када смо стигли до последњег реда, односно када је r = n. Тада смо стигли
до краја матрице и враћамо nil.

Псеудокод процедурe MinCheck дат је у виду алгоритма 1. У приказу
алгоритма, позив процедуре GetPermutation(Pv) представља одабир прои-
звољне пермутације одређене партицијом Pv.

Процедура Adapt

Улаз у процедуру Adapt, поред графа G (односно његове матрице сусед-
ства AG), партиције P и текућег реда r подразумева и чвор v који желимо
да фиксирамо тако да важи π(v) = r за сваку пермутацију π ∈ Perm(Pv).
Излаз из процедуре је партиција Pv и, евентуално, (G, π)-индикаторски пар
(уколико је пронађен).

На почетку конструкције партиције Pv раздвајамо тројку (Vr, lr, ur) на
тројке ({v}, lr, lr) и (Vr \ {v}, lr + 1, ur). Затим се за сваку тројку (Vi, li, ui) од

15

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

Алгоритам 1 Алгоритам MinCheck за проверу минималности графа
1: procedure CheckMinimality(G)
2: I, π ← MinCheck(G, [(V, 1, n)], 1)
3: if I ̸= nil then
4: C ← GenerateClause(I, π)
5: return C
6: end if
7: return nil
8: end procedure
1: procedure MinCheck(G,P = [(V1, l1, u1), . . . , (Vk, lk, uk)], r)
2: if r = n then
3: return nil
4: end if
5: for v ∈ Vr do
6: Pv, I ← Adapt(G, P , r, v)
7: if I ̸= nil then
8: π ← GetPermutation(Pv)
9: return I, π
10: end if
11: I, π ← MinCheck(G,Pv, r + 1)
12: if I ̸= nil then
13: return I, π
14: end if
15: end for
16: return nil
17: end procedure

(Vr \ {v}, lr + 1, ur) (укључујући и њу) до краја партиције, одређују скупови

V 0
i = {u ∈ Vi | AG[v][u] = 0} ,

V ⋆
i = {u ∈ Vi | AG[v][u] = ⋆} ,

и
V 1
i = {u ∈ Vi | AG[v][u] = 1} ,

и на основу тих скупова се врши трансформација партиције Pv у три корака,
које описујемо у наставку.

Први корак је да се скуп Vi раздвоји на скупове V 0
i и V ⋆

i ∪ V 1
i . У другом

кораку се разматра скуп J = {u | AG[r][u] ̸= 0, li ≤ u < li + |V 0
i |}. Уколико је

овај скуп непразан, онда се процедура зауставља и, уз партицију Pv враћа
индикаторски пар (r, j), где је j = min J . У супротном, прелази се на трећи

16

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

корак у којем посматрамо преостале индексе p ∈ {li + |V 0
i |, . . . , ui}. За свако p

разматрамо вредност AG[r][p].

• Уколико је AG[r][p] = ⋆, онда:

1. уколико v = r и p ∈ V ⋆
i , раздвајамо V ⋆

i ∪ V 1
i на {p} и V ⋆

i ∪ V 1
i \ {p} и

избацујемо p из V ⋆
i ;

2. уколико v = p и r ∈ V ⋆
i , раздвајамо V ⋆

i ∪ V 1
i на {r} и V ⋆

i ∪ V 1
i \ {r} и

избацујемо r из V ⋆
i ;

3. уколико не важи ни један ни други претходно наведени случај,
завршавамо процедуру трансформације и враћамо nil на месту ин-
дикаторског пара.

• Уколико је AG[r][p] = 0, онда завршавамо процедуру, при чему нисмо
пронашли индикаторски пар, па враћамо конструисану партицију Pv и
nil уместо индикаторског пара.

• Уколико је AG[r][p] = 1, онда посматрамо скуп V ⋆
i . Уколико тај скуп није

празан, онда раздвајамо V ⋆
i ∪ V 1

i на V ⋆
i и V 1

i и завршавамо процедуру,
при чему смо пронашли индикаторски пар - тај индикаторски пар је
(r, p). У супротном, уколико је V ⋆

i празан скуп, онда разматрамо све
индексе p′, p′ ∈ {p, . . . , ui}. Ако за неко такво p′ важи AG[r][p

′] ̸= 1,
онда завршавамо процедуру, при чему нисмо пронашли индикаторски
пар, а ако за све p′ важи AG[r][p

′] = 1 онда можемо да се зауставимо са
разматрањем индекса p.

Псеудокод процедурe Adapt дат је у виду алгоритма 2. За свако Vi, i ∈
{r + 1, . . . , k}, означена су поменута три корака трансформације.

Генерисање клаузе

У овом пододељку ћемо описати клаузу која се генерише у случају да
је пронађен индикаторски пар (поступак генерисања ове клаузе се спроводи
при позиву GenerateClause у алгоритму 1). Претпоставимо да смо за граф
G ∈ Pn пронашли (G, π)-индикаторски пар (i, j). Уведимо ознаке за наредне
скупове:

S = {(i′, j′) ∈ V × V | (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))}} ,

17

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

Алгоритам 2 Алгоритам Adapt за адаптирање P у Pv

1: procedure Adapt(G,P = [(V1, l1, u1), . . . , (Vk, lk, uk)], r, v)
2: Pv ← P
3: раздвој (Vr, lr, ur) на ({v}, lr, lr) и (Vr \ {v}, lr + 1, ur)
4: for i ∈ {r + 1, . . . , k} do
5: V 0

i ← {u ∈ Vi | AG[v][u] = 0}
6: V ⋆

i ← {u ∈ Vi | AG[v][u] = ⋆}
7: V 1

i ← {u ∈ Vi | AG[v][u] = 1}
8: раздвој (Vi, li, ui) ▷ први корак

на (V 0
i , li, li + |V 0

i | − 1) и (V ⋆
i ∪ V 1

i , li + |V 0
i | , ui)

9: J ← {u | AG[r][u] ̸= 0, li ≤ u < li + |V 0
i |} ▷ други корак

10: if J ̸= ∅ then
11: j ← min J
12: return Pv, (r, j)
13: end if
14: for p ∈ {li + |V 0

i | , . . . , ui} do ▷ трећи корак
15: if AG[r][p] = ⋆ then
16: if v = r и p ∈ V ⋆

i then
17: раздвој (V ⋆

i ∪V 1
i , p, ui) на ({p}, p, p) и (V ⋆

i \{p}∪V 1
i , p+1, ui)

18: V ⋆
i ← V ⋆

i \ {p}
19: else if v = p и r ∈ V ⋆

i then
20: раздвој (V ⋆

i ∪V 1
i , p, ui) на ({r}, p, p) и (V ⋆

i \{r}∪V 1
i , p+1, ui)

21: V ⋆
i ← V ⋆

i \ {r}
22: else
23: return Pv, nil
24: end if
25: else if AG[r][p] = 0 then
26: return nil
27: else if AG[r][p] = 1 then
28: if V ⋆

i ̸= ∅ then
29: раздвој (V ⋆

i ∪ V 1
i , p, ui)

на (V ⋆
i , p, p+ |V ⋆

i | − 1) и (V 1
i , p+ |V ⋆

i | , ui)
30: return Pv, (r, p)
31: else if V ⋆

i = ∅ и AG[r][p
′] ̸= 1, за неко p′ ∈ {p, . . . , ui} then

32: return Pv, nil
33: else
34: break
35: end if
36: end if
37: end for
38: end for
39: return Pv, nil
40: end procedure

18

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

S1 = {(i′, j′) ∈ V × V | (i′, j′) < (i, j), AG[i
′][j′] = 1, (i′, j′) /∈ S},

S2 = {(i′, j′) ∈ V × V | (i′, j′) < (i, j), Aπ(G)[i
′][j′] = 0, (i′, j′) /∈ S}.

Тада је клауза коју треба генерисати:∨
(i′,j′)∈S1

¬ei′,j′
∨

(i′,j′)∈S1

eπ−1(i′),π−1(j′) ∨ ¬ei,j ∨ eπ−1(i),π−1(j),

где је eu,v ако и само ако AG[u][v] = 1. За текући граф, сви литерали ове
клаузе, осим највише једног, су нетачни [8].

Пример извршавања алгоритма

Прикажимо пример извршавања алгоритма за проверу минималности на
графу G са матрицом суседства:

AG =


0 0 0 0 0

0 0 1 ⋆ 1

0 1 0 1 ⋆

0 ⋆ 1 0 1

0 1 ⋆ 1 0

 .

У процедуру MinCheck улазимо са партицијом
[
({1, 2, 3, 4, 5)}, 1, 5)

]
, за вред-

ност r = 1 (почињемо од првог реда матрице суседства). Важи Vr = V1 =

{1, 2, 3, 4, 5} и разматрамо све чворове v ∈ V1. За v = 1 позивамо проце-
дуру Adapt. У тој процедури, прво раздвајамо тројку ({1, 2, 3, 4, 5}, 1, 5) на
({1}, 1, 1) и ({2, 3, 4, 5}, 2, 5). Партиција постаје:[

({1}, 1, 1), ({2, 3, 4, 5}, 2, 5)
]

Потребно је размотрити све тројке почевши од ({2, 3, 4, 5}, 2, 5) до краја парти-
ције. Како је V2 = ({2, 3, 4, 5}, 2, 5) једина таква тројка, само њу разматрамо.
Може се лако видети да је:

V 0
2 = {2, 3, 4, 5}, V ⋆

2 = ∅, V 1
2 = ∅.

Како је V ⋆
2 ∪ V 1

2 = ∅, у првом кораку нема раздвајања тројке, односно пар-
тиција се не мења. У другом кораку, можемо видети да је J = ∅, тако да
прелазимо на трећи корак. Међутим, како немамо индексе p из трећег ко-
рака, и трећи корак је тривијалан. Зато излазимо из процедуре Adapt са

19

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

измењеном партицијом и без индикаторског пара. Враћамо се у процедуру
MinCheck. Резултат процедуре Adapt је трансформисана партиција

P1 =
[
({1}, 1, 1), ({2, 3, 4, 5}, 2, 5)

]
.

Рекурзивно позивамо процедуру MinCheck за ову партицију и за r = 2

(односно прелазимо у наредни ред матрице суседства).
Скуп Vr је у овом случају V2 = {2, 3, 4, 5}. Разматрамо чвор v = 2 и

за тај чвор зовемо процедуру Adapt. У тој процедури, прво раздвајамо
({2, 3, 4, 5}, 2, 5) на ({2}, 2, 2) и ({3, 4, 5}, 3, 5), а онда примењујемо кораке 1-3
над тројком V3 = ({3, 4, 5}, 3, 5). Скуп V3 се разлаже на скупове:

V 0
3 = ∅, V ⋆

3 = {4}, V 1
3 = {3, 5}.

Опет, у првом кораку нема раздвајања (овог пута зато што је V 0
3 = ∅) и

партиција остаје непромењена. Такође, и овде је J = ∅, те је и овде други
корак тривијалан. У трећем кораку, разматрамо индексе p ∈ {3, 4, 5}. Узмимо
p = 3. Како је AG[2][3] = 1 и V ⋆

3 ̸= ∅, то раздвајамо тројку ({3, 4, 5}, 3, 5) на
({4}, 3, 3) и ({3, 5}, 4, 5). Индикаторски пар је пронађен - то је пар (2, 3).
Враћамо текућа партицију:[

({1}, 1, 1), ({2}, 2, 2), ({4}, 3, 3), ({3, 5}, 4, 5)
]

и пронађени индикаторски пар и завршавамо процедуру. Како је у процедури
Adapt пронађен индикаторски пар, рекурзивни позив процедуре MinCheck

се такође завршава уз индикаторски пар као резултат.
Како је рекурзивни позив вратио индикаторски пар (2, 3), потребно је

вратити тај индикаторски пар, заједно са произвољном пермутацијом коју
одређује текућа партиција. Како је текућа партиција:[

({1}, 1, 1), ({2}, 2, 2), ({4}, 3, 3), ({3, 5}, 4, 5)
]
,

једна таква пермутација је:

π =

(
1 2 3 4 5

1 2 4 3 5

)
.

Процедура MinCheck је вратила индикаторски пар (2, 3) и пермутацију π,
па на основу тих информација процедуром GenerateClause конструишемо
одговарајућу клаузу коју враћамо. Тиме је целокупна процедура завршена.
На слици 3.4 представљени су графови G и π(G), заједно са својим матрицама
суседства.

20

ГЛАВА 3. ЕЛИМИНАЦИЈА СИМЕТРИЈА НАД ГРАФОВИМА

1

2 3

4 5
G


0 0 0 0 0

0 0 1 ⋆ 1
0 1 0 1 ⋆
0 ⋆ 1 0 1
0 1 ⋆ 1 0



1

2 3

4 5
π(G)


0 0 0 0 0
0 0 ⋆ 1 1
0 ⋆ 0 1 1
0 1 1 0 ⋆
0 1 1 ⋆ 0


Слика 3.4: Графови G и π(G) са својим матрицама суседства. Пронађени
индикаторски пар (2, 3) означен је у обе матрице.

21

Глава 4

Имплементација

У овом поглављу биће описана имплементација1 алгоритма за проверу
минималности графа и уградња истог у решавач ArgoSMT [2]. Решавач
ArgoSMT и имплементација алгоритма су отвореног кода и писани су у про-
грамском језику C++. Прво ћемо кратко описати архитектуру на којој по-
чивају модерни SMT решавачи, а онда ћемо описати конкретне релевантне
детаље архитектуре решавача ArgoSMT и приказати како се имплементација
поменутог алгоритма уклапа у овај контекст.

4.1 CDCL(T) архитектура

Модерни SMT решавачи су засновани на CDCL(T)2 архитектури [11]. Она
се састоји од SAT решавача заснованог на CDCL алгоритму и теоријског
решавача (T -решавача) са којим SAT решавач комуницира.

Улога SAT решавача (зовемо га и SAT језгром) јесте да постепено гради
исказну валуацију у циљу испитивања задовољивости исказне апстракције
дате формуле. Он, дакле, не узима у обзир семантику теорије T и резонује
искључиво о исказној структури формуле. С друге стране, резоновање у
теорији T је препуштено теоријском решавачу.

Исказна валуација се гради у облику стека литерала која се обично назива
трејл (енг. trail). Литерали на трејлу су подељени на нивое одлучивања, при
чему сваки ниво одлучивања започиње литералом одлучивања (тј. литералом

1Путања до GitHub репозиторијума у оквиру којег се налази имплементација:
https://github.com/RobertDoza/argosmt.git

2Овде T означава неку конкретну теорију првог реда.

22

https://github.com/RobertDoza/argosmt.git

ГЛАВА 4. ИМПЛЕМЕНТАЦИЈА

чија је вредност произвољно одабрана као претпоставка) који је праћен про-
пагираним литералима (тј. литералима за које је резоновањем утврђено да
морају да важе под датим претпоставкама). У случају да текућа парцијална
валуација постане неконзистентна са формулом (тј. имамо конфликт), SAT
решавач врши анализу конфликта и враћање уназад на неки од претходних
нивоа одлучивања, поништавајући претпоставке за које се испоставило да су
неконзистентне (као и литерале који су на основу њих пропагирани) [3].

Улога T -решавача је да током конструкције задовољавајуће исказне ва-
луације у оквиру SAT језгра испитује T -задовољивост текуће конјункције
литерала првог реда. Уколико T -решавач закључи да је текуће стање ли-
терала незадовољиво у теорији T (односно, да имамо теоријски конфликт),
од њега се очекује да може да објасни зашто је то случај, односно да SAT
језгру пружи објашњење конфликта (у виду конјункције литерала, односно
скупа литерала који су у теоријском конфликту). Такође, веома јe пожељно
да T -решавач уме и да закључује унапред, што значи да је у стању да изврши
теоријске пропагације, односно да на основу до сада установљених литерала
закључи да неки други литерал треба да важи. И у том случају је потребно да
T -решавач уме да објасни пропагацију, односно да издвоји скуп литерала из
текуће парцијалне валуације на основу којих је извео тај теоријски закључак.
Тај скуп литерала зовемо објашњењем пропагације.

Комуникација између SAT решавача и T -решавача се изводи путем ин-
терфејса који најчешће, у неком облику, подразумева наредне методе:

• newLevel() – обавештава T -решавач да је SAT решавач започео нови
ниво одлучивања;

• backјump(m) – обавештава T -решавач да је SAT решавач извршио по-
вратни скок на ниво одлучивања m;

• assert(l) – обавештава T -решавач да је литерал l постављен на трејл;

• checkConflict(E) – од T -решавача се тражи да провери да ли постоји
конфликт у теорији; уколико постоји, враћа се објашење тог конфликта
у виду скупа литерала E са трејла;

• checkPropagate(L) – T -решавач се пита да ли се може извршити те-
оријска пропагација; уколико може, теоријски решавач пружа скуп L

пропагираних литерала;

23

ГЛАВА 4. ИМПЛЕМЕНТАЦИЈА

• explainLiteral(l, E) – уколико је литерал l изведен у теорији, од-
носно резултат теоријске пропагације, T -решавач враћа објашњење те
пропагације у виду скупа литерала E који претходе литералу l на трејлу.

Рад решавача се завршава или када је парцијална валуација комплетирана
без конфликта (у ком случају је формула задовољива) или када се појави
конфликт на нултом нивоу одлучивања (у ком случају је формула незадово-
љива).

4.2 Решавач ArgoSMT

Решавач ArgoSMT [2] подржава рад са теоријом линеарне аритметике и
теоријом једнакости (енг. EUF - equality with uninterpreted functions). Осим
ових, овај решавач подржава и једну специфичну теорију која се у терми-
нологији ArgoSMT решавача назива CSP теорија, а која подржава резоно-
вање о ограничењима над коначним доменима. За сваки тип ограничења,
теоријски решавач за CSP теорију садржи посебан руковалац ограничењем
(енг. constraint handler) који управља тим типом ограничења. По један овакав
руковалац се инстанцира за сваку инстанцу ограничења одговарајућег типа.
Улога руковаоца одређеног типа ограничења је да о придруженом ограничењу
резонује на одговарајући начин, узимајући у обзир семантику ограничења.
Решавач ограничења комуницира са руковаоцем и доставља му ограничења
домена променљивих које су релевантне за то ограничење, у виду литерала.
Руковалац обрађује ова ограничења и извештава решавач о конфликтима и
пропагацијама када до њих дође.

За потребе интеграције алгоритма за проверу минималности графа у ре-
шавач ArgoSMT, наша имплементација ће подразумевати увођење новог типа
ограничења: ограничења лексикографске минималности графа (које ћемо на-
зивати graph_lex_min ограничење). За овај нови тип ограничења потребно
је имплементирати посебан руковалац који ће бити заснован на алгоритму
описаном у претходној глави. Ову имплементацију описујемо у наставку.

4.3 Руковалац graph_lex_min ограничења

Руковалац лексикографске минималности графа је имплементиран у виду
класе

24

ГЛАВА 4. ИМПЛЕМЕНТАЦИЈА

class graph_lex_minimal_constraint_handler;

Ова класа одржава свој интерни трејл литерала на коме се чувају литерали
који представљају ограничења домена релевантних променљивих. Наиме,
граф је представљен променљивама ei,j са значењем „постоји грана између
чворова i и j”, а које имају целобројне домене {0, 1}. Ограничења ових про-
менљивих (попут ei,j = 1 или ei,j = 0) се достављају руковаоцу, а он на основу
њих води евиденцију о тренутном стању графа. Најзначајније методе које ова
класа имплементира су:

• new_level() - овом методом класа прави нови ниво одлучивања на ин-
терном трејлу, за потребе каснијих повратних скокова;

• assert_literal() - овом методом се руковаоцу достављају релевантни
литерали ограничења домена за његов интерни трејл, а који се касније
обрађују методом check_and_propagate;

• backјump() - приликом повратног скока на трејлу теоријског решавача,
овом методом се врши повратни скок на интерном трејлу руковаоца;

• check_and_propagate() - ова метода служи да анализира тренутно ста-
ње трејла и да закључи да ли је дошло до конфликта (и у том случају
се теоријском решавачу доставља објашњење тог конфликта) или се
може извршити теоријска пропагација (и у том случају се теоријском
решавачу доставља резултат те пропагације);

• explain_literal() - овом методом руковалац објашњава литерал који је
раније пропагиран, односно генерише скуп литерала који су узроковали
пропагацију у овкиру руковаоца.

Класа користи инстанцу помоћне класе GraphState која служи да чува
тренутно стање графа који се током претраге постепено конструише. Кон-
кретно, она чува тренутно стање матрице суседства графа, а уз то памти и
историју промена које су се десиле над том матрицом суседства. Матрица
суседства је при иницијализацији „празна”, то јест на свим позицијама су
недефинисане вредности (⋆), осим на главној дијагонали, на којој су све вред-
ности 0. Током претраге и обраде одговарајућих ограничења, вредности се
постепено постављају на 1 или 0, у зависности од тога да ли, према тренутној
валуацији, у графу постоји или не постоји грана између одговарајућа два

25

ГЛАВА 4. ИМПЛЕМЕНТАЦИЈА

чвора. Конкретно, одговарајућа вредност у матрици суседства се ажурира у
зависности од литерала ограничења домена променљивих које пристижу на
трејл, а о чему руковалац бива обавештен од стране решавача. На пример,
ако решавач обавести руковалац ограничења да је на трејл постављен лите-
рал e2,3 = 0, вредност одговарајућег поља матрице суседства AG[2][3] графа
G се поставља на 0. Такође, кад год теоријски решавач обавести руковалац о
томе да је на трејлу уведен нови ниво одлучивања, објекат класе GraphState

у својој историји промена такође креира нови ниво. Сваки пут када се неко
поље у матрици суседства постави на неку вредност (на претходно описан
начин), то се бележи у историји промена матрице, на текућем нивоу. Прили-
ком повратног скока, класа поништава све промене које су се десиле на свим
нивоима одлучивања који се поништавају на трејлу решавача.

Процедура MinCheck имплементирана је у посебном модулу и она се по-
зива из методе check_and_propagate. Ако је пронађен индикаторски пар,
на основу њега се генерише одговарајућа клауза (пододељак 3.4 описа алго-
ритма). Та клауза, као што је поменуто, је по тренутном стању графа или
поништена у целости, или има тачно један непоништен литерал. У првом
случају имамо конфликт и тада се решавачу прослеђује конфликтни скуп,
то јест скуп литерала у овој клаузи. У другом случају, једини непоништени
литерал може бити недефинисан или је већ тачан на трејлу. Уколико је
недефинисан, онда га пропагирамо, а уколико је већ тачан на трејлу, онда
га не пропагирамо. При пропагацији литерала, остали литерали (они који
су нетачни у клаузи) се користе за генерисање објашњења пропагације (обја-
шњење чини конјункција негација ових литерала). Овај скуп литерала се зато
памти у посебној структури _propagation_explanations, како би руковалац
имао спремно објашњење пропагације када оно затреба решавачу. Стога, ако
решавачу затреба објашњење литерала приликом анализе конфликта, он то
објашњење може добити од руковаоца путем методе explain_literal(), чија
се логика своди на једноставно читање из ове структуре и налажење одгова-
рајућег објашњења.

26

Глава 5

Евалуација

Имплементацију алгоритма описану у претходној глави тестирали смо на
проблему генерисања графова са задатим бројем чворова, грана и троуглова
(тј. клика величине три). Ове вредности ћемо означавати са n, m и t, редом,
и у даљем тексту их називати парамтерима, односно спецификацијом графа.

За потребе експерименталне евалуације, на произвољан начин смо ода-
брали 50 спецификација за које је број чворова n између 10 и 30. За сваку
од спецификација покренули смо решавач на два начина - без додавања и
са додавањем ограничења лексикографске минималности, да бисмо могли да
упоредимо резултате.

У табели 5.1 приказани су резултати примене решавача над спецификаци-
јама графова за које је 10 ≤ n ≤ 20. Све ове спецификације су задовољиве,
односно постоје графови са тим бројем чворова, грана и троуглова, редом.
Дакле, разматрамо да ли решавач успева и за које време да конструише гра-
фове тамо где је то могуће. Максимално време за извршавање које је дато
решавачу (енг. timeout) је 10 минута по инстанци. У табели су коришћене
следеће ознаке:

• n - број чворова у графу;

• m - број грана у графу;

• t - број троуглова у графу;

• tcsp - укупно време извршавања решавача који не разматра ограничење
минималности;

27

ГЛАВА 5. ЕВАЛУАЦИЈА

• ncsp
confl - број конфликата током извршавања решавача који не разматра

ограничење минималности;

• ncsp
decide - број примена правила одлучивања (енг. decide) током изврша-

вања решавача који не разматра ограничење минималности;

• tsym - укупно време извршавања решавача који разматра ограничење
минималности графа;

• tcheck - укупно време извршавања процедуре MinCheck;

• nsym
confl - број конфликата током извршавања решавача који разматра

ограничење минималности;

• nsym
decide - број примена правила одлучивања током извршавања решавача

који разматра ограничење минималности;

• nprop - број пропагација руковаоца ограничењем минималности;

• nconfl - број конфликата руковаоца ограничењем минималности;

• mtotal - укупан број позива процедуре MinCheck;

• mind - број позива процедуре MinCheck који су резултовали индикатор-
ским паром.

Можемо приметити да постоје инстанце код којих је решавач са ограничењем
минималности успео за доста мање времена да изврши конструкцију графа
него без тог ограничења. Специјално, за n = 12, m = 35 и t = 32, примећујемо
да решавач без ограничења минималности чак није ни успео да конструише
граф за 10 минута, док је са тим ограничењем успео, за упоредиво много
краће време. С друге стране, постоје спецификације на којима је решавач
провео мање времена када није узимао у обзир ограничење минималности (на
пример, спецификација n = 12, m = 36, t = 37).

У табели 5.2 приказани су резултати експерименталне евалуације над спе-
цификацијама у којима је 21 ≤ n ≤ 30 (ознаке колона у овој табели имају
идентично значење као у претходној). Као у претходном разматрању, све спе-
цификације одговарају задовољивим проблемима и свакој од њих је дато мак-
симално 10 минута за извршавање. Као што је очекивано, повећавањем тра-
женог броја чворова, добијамо више спецификација у којима није било могуће

28

ГЛАВА 5. ЕВАЛУАЦИЈА

извршити конструкцију за дато време. Приметимо да има више специфика-
ција у којима је решавач био спорији када је разматрао ограничење минимал-
ности графа. Такође, имамо и инстанце у којима је једна варијанта решавања
била значајно бржа од друге, у оба смера (инстанце (n,m, t) = (21, 30, 15) и
(n,m, t) = (27, 30, 6)). За дубље разумевање добијених резултата, потребно је
обавити детаљнију анализу, што може бити предмет даљег рада.

Табела 5.1: Резултати евалуације за 10 ≤ n ≤ 20 (времена су дата у секун-
дама)

Параметри CSP без MinCheck CSP са MinCheck
n m t tcsp ncsp

confl ncsp
decide tsym tcheck nsym

confl nsym
decide nprop nconfl mtotal mind

10 15 6 0.033 7 47 0.076 0.001 25 78 1 0 189 187
10 16 4 0.070 101 161 0.181 0.015 560 824 6 3 2612 2610
12 18 3 0.076 106 205 0.338 0.017 606 1067 7 4 3176 3174
12 18 4 0.094 103 271 0.492 0.022 880 1337 9 6 4209 4207
12 24 2 0.225 430 742 1.606 0.103 4746 5654 38 10 21507 21505
12 28 18 1.462 3982 12076 5.536 0.472 12707 30642 17 0 80816 80806
12 35 32 - - - 4.124 0.377 10698 32847 17 1 79379 79377
12 36 37 6.519 16127 53952 16.967 1.759 31249 94478 17 0 227576 227574
14 21 1 0.053 0 21 0.370 0.014 319 718 4 11 1927 1923
15 14 0 0.053 0 14 0.080 0.000 2 21 1 2 48 46
15 15 1 0.065 0 67 0.077 0.001 2 52 1 1 83 81
15 16 2 0.091 0 88 0.090 0.001 1 124 1 1 209 207
15 17 3 0.086 0 107 0.062 0.000 3 39 1 1 55 53
15 18 4 0.086 0 106 0.085 0.001 2 44 1 1 68 66
15 28 14 0.130 101 227 0.161 0.005 108 297 4 1 746 744
16 15 0 0.083 0 15 0.088 0.001 4 33 1 4 74 72
16 16 1 0.090 1 69 0.075 0.001 2 50 1 1 76 74
16 17 2 0.075 1 70 0.085 0.001 7 69 1 4 103 101
16 18 3 0.096 2 148 0.083 0.001 7 66 1 4 105 103
16 19 4 0.098 1 124 0.084 0.001 5 87 1 3 123 121
16 24 0 0.066 0 24 0.094 0.003 48 124 6 13 327 323
16 30 15 0.161 101 243 0.176 0.005 108 248 5 2 656 654
16 32 0 0.079 0 32 0.206 0.021 662 833 7 23 2974 2968
20 19 0 0.124 0 19 0.143 0.001 3 57 1 3 121 119
20 20 1 0.149 0 25 0.166 0.001 1 54 1 0 75 73
20 21 2 0.141 1 45 0.152 0.001 1 55 1 0 77 75
20 22 3 1.854 127 2178 0.157 0.001 2 72 1 0 105 103
20 23 4 37.042 921 55661 0.221 0.002 3 108 1 0 177 175
20 25 4 0.144 0 54 3.766 0.025 306 865 4 0 2221 2219
20 28 12 - - - 0.796 0.014 136 628 3 0 1445 1443
20 38 19 60.649 2414 85419 0.548 0.017 106 517 4 3 1174 1132
20 69 0 0.139 1 72 0.261 0.018 361 592 9 27 1808 1804

29

ГЛАВА 5. ЕВАЛУАЦИЈА

Табела 5.2: Резултати евалуације за 21 ≤ n ≤ 30 (времена су дата у секун-
дама)

Параметри CSP без MinCheck CSP са MinCheck
n m t tcsp ncsp

confl ncsp
decide tsym tcheck nsym

confl nsym
decide nprop nconfl mtotal mind

21 22 7 - - - - - - - - - - -
21 30 15 - - - 0.383 0.005 30 207 1 0 431 429
22 24 0 0.167 0 24 0.195 0.005 33 216 4 19 463 459
22 33 9 1.338 111 402 8.871 0.074 444 2408 5 1 5293 5291
23 26 2 0.211 0 36 6.419 0.013 208 311 2 1 973 971
23 31 14 - - - - - - - - - - -
24 28 5 0.473 2 118 17.512 0.108 674 3214 9 1 7125 7123
24 35 20 - - - - - - - - - - -
25 29 8 - - - - - - - - - - -
25 32 17 - - - - - - - - - - -
26 27 1 0.329 0 34 24.820 0.048 478 950 9 23 2710 2702
26 36 11 11.691 214 659 7.556 0.018 179 464 5 1 1204 1202
27 30 6 0.462 1 66 - - - - - - - -
27 33 19 - - - - - - - - - - -
28 32 3 0.455 0 47 94.586 0.500 2247 10521 9 22 22968 22966
28 38 12 0.489 1 58 5.207 0.024 114 530 3 0 1173 1171
29 34 10 - - - - - - - - - - -
30 39 18 - - - - - - - - - - -

30

Глава 6

Закључци и даљи рад

У овом раду размотрен је алгоритам MinCheck за проверу лексикограф-
ске минималности графа, као и његова имплементација у оквиру CDCL(T)
заснованог решавача ArgoSMT. Овај алгоритам омогућава детектовање ин-
дикаторских парова који указују на неминималност графа и омогућава су-
жавање простора претраге елиминацијом симетрија између изоморфних гра-
фова.

Примена разбијања симетрија овим алгоритмом илустрована је на про-
блему конструкције графова са одређеним бројем чворова, грана и троуглова.
Евалуација је показала обећавајуће резултате на одређеним инстанцама овог
проблема, али је потребна дубља анализа ових резултата у циљу бољег ра-
зумевања предности коришћења овог приступа, као и даљег унапређења и
евентуалних оптимизација алоритма MinCheck.

У даљем раду, могао би бити размотрен проблем енумерације свих гра-
фова који задовољавају ова ограничења, то јест тражење свих графова са
датим бројем чворова, грана и троуглова. Елиминација симетрија код овог
проблема би била од изузетног значаја јер би се њом, осим повећања ефика-
сности, обезбедила енумерација искључиво неизоморфних (то јест суштински
различитих) графова. Такође бисмо могли разматрати проблеме конструк-
ције графова са другачијим својствима. На пример, како су троуглови уједно
и циклуси са 3 чвора и клике са 3 чвора, ограничење броја троуглова у графу
би могло бити уопштено - ограничењем броја циклуса одређене дужине или
клика одређене величине.

31

Библиографија

[1] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based
search. Constraints, 7(3):333–349, Јul 2002.

[2] Milan M Banković. Унапређивање SMT решавачa коришћењем CSP тех-
ника и техника паралелизације. Универзитет у Београду, 2016.

[3] Armin Biere, Mariјn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence
and Applications. IOS Press, second edition, 2021.

[4] Michael Codish, Alice Miller, Patrick Prosser, and Peter Ј. Stuckey.
Constraints for symmetry breaking in graph representation. Constraints,
24(1):1–24, Јan 2019.

[5] Јo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher
Mears. Symmetry propagation: Improved dynamic symmetry breaking in
sat. In 2012 IEEE 24th International Conference on Tools with Artificial
Intelligence, volume 1, pages 49–56, 2012.

[6] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry
breaking. In Toby Walsh, editor, Principles and Practice of Constraint
Programming — CP 2001, pages 93–107, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[7] Ian P. Gent, Karen E. Petrie, and Јean-François Puget. Chapter 10 -
symmetry in constraint programming. In Francesca Rossi, Peter van Beek,
and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence, pages 329–376. Elsevier, 2006.

[8] Markus Kirchweger and Stefan Szeider. SAT Modulo Symmetries for Graph
Generation. In Laurent D. Michel, editor, 27th International Conference

32

БИБЛИОГРАФИЈА

on Principles and Practice of Constraint Programming (CP 2021), volume
210 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–
34:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[9] Olga Ohrimenko, Peter Ј Stuckey, and Michael Codish. Propagation via lazy
clause generation. Constraints, 14(3):357–391, 2009.

[10] Јean-François Puget. Symmetry breaking using stabilizers. In Francesca
Rossi, editor, Principles and Practice of Constraint Programming – CP 2003,
pages 585–599, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[11] Cesare Tinelli and Clark Barrett. Smt solvers: Techniques and applications.
In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 305–343. Springer, 2016.

33

Биографија аутора

Роберт Дожа, рођен 15. новембра 1998. године у Београду, је мастер сту-
дент студија на Математичком факултету Универзитета у Београду. Основне
студије завршио је 2023. године. Те године је био демонстратор на предмету
Програмирање 1. Исте године је био учесник студентске летње истраживачке
праксе Математичког института Српске академије наука и уметности. Роберт
је од 2023. године запослен као сарадник у настави у оквиру Катедре за ра-
чунарство и информатику Математичког факултета, где је изводио наставу
вежби на предметима Рачунарски системи и Програмирање база података.

	Увод
	Основе
	Исказна логика
	SAT проблем
	Логика првог реда
	Теорије првог реда, SMT проблем
	Графови
	Проблеми задовољења ограничења

	Елиминација симетрија над графовима
	Парцијални графови
	Индикаторски парови
	Партиције
	Опис алгоритма

	Имплементација
	CDCL(T) архитектура
	Решавач ArgoSMT
	Руковалац graph_lex_min ограничења

	Евалуација
	Закључци и даљи рад
	Библиографија

