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Naslov master rada: Svodenje problema zadovoljenja ograni¢enja zadatih na je-
ziku FlatZinc na problem SAT

Rezime: U ovom radu je predstavljen alat za svodenje problema zadovoljenja ogra-
nic¢enja na problem SAT. Pored neophodnih teorijskih osnova, dat je i opis ulaznog
jezika alata pod nazivom FlatZinc. Procedura kodiranja FlatZinc promenljivih, kao
i pojedinac¢nih FlatZinc ogranicenja celobrojnog, logickog i skupovnog tipa detaljno
je opisana i analizirana. Klju¢ni detalji implementacije, kao i detaljna evaluacija

alata izloZeni su u poslednje dve glave ovog rada.
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Glava 1

Uvod

Pojam problema zadovoljenja ogranic¢enja (engl. Constraint satisfaction problem
(problem CSP)) pojavio se sedamdesetih godina proslog veka [7]. Vrlo brzo je do-
bio na popularnosti zbog moguénosti predstavljanja brojnih prakti¢nih problema u
obliku problema CSP. Lista domena u kojima se problem CSP pojavljuje ukljucuje
obradu prirodnih jezika [4], planiranje i alokaciju resursa |2], automatsko dokazivanje
teorema [5] 1 mnoge druge.

U svojoj osnovnoj formi, problem CSP podrazumeva dodelu vrednosti svakoj
od promenljivih koje uc¢estvuju u problemu. Svaka od promenljivih uzima vrednost
iz svog fiksiranog domena, dok ogranic¢enja koja figurisu u problemu odreduju koje
vrednosti promenljivih ne mogu i¢i zajedno. U slucaju da postoji dodela vrednosti
promenljivama takva da poStuje sva ogranicenja, kazemo da problem ima reSenje.
U suprotnom, problem nema resenja.

Razvijeni su brojni alati u cilju resavanja problema CSP pod nazivom CSP resa-
vaci. Oni su najéeSce zasnovani ne nekoj vrsti pretrage sa vracanjem (engl. backtrac-
king search) ili lokalne pretrage. Takode, obi¢no se koriste tehnike pojednostavljenja
problema pre primene pretrage, kolektivno poznate kao propagacija ogranicenja.

Sa razvojem CSP reSavaCa pojavila se potreba za standardizovanim jezicima
za modelovanje problema CSP. Jedan od trenutno najpopularnijih takvih jezika
nosi naziv MiniZinc [15]. Kako je MiniZinc vrlo izrazajan jezik, modeli zapisani u
njemu mogu biti izuzetno kompleksni. Iz tog razloga, pre nego §to bude predat CSP
reSavacu, ulaz na jeziku MiniZinc se najcesée prevodi u njegovu pojednostavljenu
formu, poznatu kao FlatZinc [14].

Problem ispitivanja zadovoljivosti iskazne formule (engl. Boolean satisfiability

problem (problem SAT)) jedan je od centralnih problema teorijskog ra¢unarstva jos
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od sedamdesetih godina proslog veka [1]|. Tada je dokazano da je problem SAT NP-
kompletan, postavsi tako prvi problem za koji je formalno dokazana pripadnost ovoj
klasi slozenosti. U meduvremenu, razvijen je veliki broj izuzetno efikasnih alata za
reSavanje ovog problema pod nazivom SAT resavaci. Oni najcesée na ulazu oc¢ekuju
formulu u konjunktivnoj normalnoj formi (KNF).

Jedan od mogucih nacina resavanja problema CSP ukljucuje njegovo svodenje
na problem SAT [9]. Dva glavna pristupa tome su vredno (engl. eager) i lenjo gene-
risanje klauza (engl. lazy clause generation [11]). Kljuéna razlika izmedu pristupa se
ogleda u tome Sto se kod vrednog generisanja klauza ¢itav model unapred prevodi
u KNF i zatim predaje postojecem SAT reSavacu na resavanje, dok se kod lenjog
pristupa SAT reSava¢ koristi interno u okviru CSP reSavaca za pretragu koja se
usmerava dinamickim generisanjem klauza koje kodiraju ogranic¢enja u toku pretra-
ge. Postoje alati zasnovani, kako na prvom (Sugar [17]), tako i na drugom pristupu
(Chuffed [13], geas [16]). Dok alati zasnovani na lenjom generisanju klauza uglav-
nom podrzavaju FlatZinc kao ulazni jezik, alati zasnovani na vrednom pristupu po
pravilu koriste svoje specificne ulazne jezike. Koliko je autoru ovog rada poznato, ne
postoji alat koji problem CSP predstavljen na jeziku FlatZinc konvertuje u KNF.

Cilj ovog rada bi¢e implementacija i predstavljanje jednog takvog alata, zasno-
vanog na vrednom pristupu generisanja klauza. Alat ¢e vrsiti kodiranje FlatZinc
promenljivih, kao i ograni¢enja celobrojnog, logickog i skupovnog tipa u DIMACS
format 3] koji podrzava ve¢ina modernih SAT resavaca. Pored toga, bi¢e omoguéeno
dekodiranje izlaza SAT resavaca u sluc¢aju zadovoljivih problema.

Ostatak rada je organizovan na slede¢i nac¢in. U glavi 2 bi¢e predstavljene neop-
hodne teorijske osnove, zajedno sa ilustrativnim primerima. U glavi 3 bi¢e opisan
i analiziran nac¢in kodiranja FlatZinc promenljivih i pojedina¢nih ogranicenja. U
glavi 4 bice dat osvrt na kljuéne implementacione detalje alata. U glavi 5 bi¢e pred-
stavljena detaljna evaluacija performansi alata. Glava 6, kao zakljucak, predocice

postignute rezultate ovog rada, kao i predloge za potencijalni dalji rad.



Glava 2

Osnove

2.1 Problem zadovoljenja ogranicenja

Problem zadovoljenja ogranic¢enja (problem CSP) P je uredena trojka P = (X,

D, C) , pri ¢emu vazi:
e X = (x1,...,2,) je niz promenljivih

e D = (Dy,...,D,) je niz odgovarajuc¢ih domena promenljivih, pri ¢emu je D;

domen promenljive z; (skraceno D(z;) = D;)

e C = (C4,...,C,,) jeniz ogranicenja, pri ¢emu je svako ogranicenje C; podskup
D;, x ---x D, za neki rastuci niz indeksa iy, ..., ;. Kazemo da promenljive
Tiy, - .., x;, figuriSu u ograni¢enju C; (skraceno X (C;) = (xiy,...,2;,)), a broj

k nazivamo arnost ogranicenja.

Resenje problema CSP P je uredena n-torka (di,...,d,) € Dy x -+ X D, ta-
kva da za svako ogranic¢enje C; nad promenljivama (z;,,...,x;, ), k-torka d;,, ..., d;,
pripada C;. Najéesce se resenje problema CSP (dy, ..., d,) zapisuje kao dodela vred-
nosti promenljivama {x; = di,...,z, = d,}. Takode, najc¢esée se pod resavanjem
problema CSP podrazumeva pronalazenje bilo kog resenja, a rede, pronalazenje svih
moguéih resenja.

Domen CSP promenljive moze biti konacan, prebrojivo beskonacan ili nepre-
brojivo beskonacan. U ovom radu, paznja ¢e biti posvecena problemima CSP sa

kona¢nim domenima promenljivih.

Primer 1. Primer problema koji moZe biti modelovan kao problem CSP sa konacnim

domenima promenljivih je problem osam dama. Cilj ovog problema je postaviti osam

3
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dama na Sahovsku tablu tako da se medusobno ne napadaju. Jedno moguce reSenje,

kao © primer modelovanja problema osam dama u obliku problema CSP dati su u

nastavku:
8
7
6
5
4
3
2
N
a b c d e f g h
Slika 2.1: Jedno moguée resenje problema osam dama.’
e Promenljive: x; zai € {1,...,8}, gde svako x; predstavija redni broj vrste u

kojoj cée biti postavljena dama iz i-te kolone.
e Domeni: D; = {1,...,8} za svaku promenljivu x;.
e Ogranicenja:
1. Ogranicenja vrsta: Svaka vrsta mora sadrzati tacno jednu damu:
Vi,je{l,....8} i<j = z;, #ux;

2. Ogranicenja dijagonala: Dve dame ne smeju biti postavljene na istoj

dijagonali:
Vi,je{l,....8} i<j = |v; — x| #|i—Jj|

Jedno resenje ovog problema je {x1 = 5,19 = 3,23 = 1,24 = 7,25 = 2,26 =

8,27 = 6,25 =4} (slika 2.1).

1Slika preuzeta sa https://en.wikipedia.org/wiki/Eight_queens_puzzle
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2.2 MiniZinc 1 FlatZinc

MiniZinc je jezik visokog nivoa za modelovanje problema CSP [10]. Sadrzi veliku
biblioteku predefinisanih ogranic¢enja koja mu omoguéava izuzetnu ekspresivnost pri
modelovanju. Takode, MiniZinc podrzava razli¢ite mehanizme koji olaksavaju proces
modelovanja, poput struktura podataka visokog nivoa (nizovi, skupovi, enumerisani
tipovi), korisnicki definisanih funkcija i predikata, kao i razgrani¢enja podataka i
modela.

Primer gorepomenutog problema osam dama modelovanog pomocu jezika Mini-

Zinc dat je u nastavku:

par int : n = 8;

array[1..n] of var 1..n: queens;

constraint
forall(i in 1..n) (
forall(j in i+1..n) (
queens [i] != queens[j] /\
abs (queens [i] - queens[j]) != abs(i - j)
)
)

solve satisfy;

output [ show(queens) 1];

U navedenom modelu, po klju¢noj rec¢i par moze se prepoznati da n predstavlja
MiniZinc parametar - simbolicku konstantu ¢ija je vrednost poznata u fazi prevode-
nja u FlatZinc, a ¢ija se vrednost moze zadati i u zasebnoj datoteci. Klju¢na re¢ var
koristi se pri deklaraciji MiniZinc promenljive ¢iji se domen zadaje, a od reSavaca
se ocekuje da joj dodeli vrednost. Kljucéna re¢ array govori da je u pitanju dekla-
racija niza, a konstrukti [1..n] i 1..n odreduju redom njegovu dimenziju (niz ima n
elemenata), odnosno domen svakog od elemenata (skup celih brojeva {1,...,n}).
U kombinaciji, kljuéne rec¢i array i var govore da je u pitanju deklaracija nizovske
promenljive - niza ¢iji su elementi promenljive. Nakon klju¢ne re¢i constraint navodi
se ogranicenje, a nakon klju¢ne reci solve cilj modela (zadovoljenje ili optimizacija).

FlatZinc je podskup jezika MiniZinc ¢ija je primarna uloga da sluzi kao ulaz

za CSP resavace. Njegova sintaksa je znatno jednostavnija (u smislu ogranicenja

5




GLAVA 2. OSNOVE

koja se mogu zadati) od sintakse jezika MiniZinc, ali za razliku od MiniZinc mode-
la, FlatZinc modeli ¢esto umeju da budu glomazni i necitljivi za ¢oveka. U okviru
standardne MiniZinc distribucije? postoji alat koji automatski prevodi ulaz zadat
na jeziku MiniZinc u FlatZinc reprezentaciju koja se dalje moze proslediti odgova-
raju¢em reSavacu.

Kao i MiniZinc modeli, FlatZinc modeli se sastoje iz:

e nula ili viSe spoljasnjih deklaracija predikata (nestandardni predikati podrzani

od strane konkretnih resavaca)
e nula ili vise deklaracija parametara
e nula ili vise deklaracija promenljivih
e nula ili viSe ogranicenja
e jednog cilja modela (zadovoljenje, maksimizacija, minimizacija)

Klju¢na razlika u odnosu na MiniZinc modele je u tome sto su ogranic¢enja koja
se mogu zadavati u FlatZinc modelu znatno jednostavnija. FlatZinc ograni¢enja mo-
gu se svrstati u jedan od cetiri tipa: celobrojna, logicka, skupovna ili realna. Sli¢no,
promenljive u jeziku FlatZinc mogu biti celobrojnog, logickog, skupovnog, realnog,
ali i nizovskog tipa, tj. mogu predstavljati niz vrednosti nekog od osnovnih tipo-
va. Parametri su fiksirane vrednosti koje figurisu u modelu i mogu biti istih tipova
kao i promenljive. Cilj ovog rada je prevodenje FlatZinc modela koji predstavljaju
probleme CSP, pa ¢e se podrazumevati da je cilj modela njegovo zadovoljenje, a ne
optimizacija odredenog izraza. Takode, bi¢e obradena standardna FlatZinc ograni-
¢enja, pa ¢e odsustvo spoljasnjih predikata biti podrazumevano.

Prevodenje MiniZinc modela u FlatZinc model naziva se poravnanje (engl. flat-
tening). Poravnanjem se najceS¢e uvode pomocne promenljive koje nisu postojale
u osnovnom MiniZinc modelu, a slozena MiniZinc ogranic¢enja se rasclanjavaju na
jednostavnija FlatZinc ogranicenja.

Poravnanjem MiniZinc modela osam dama uvodi se osam novih promenljivih
koje predstavljaju elemente niza queens. Ograni¢enja vrsta svode se na ogranice-
nja oblika int_lin_ne([—1, 1], [x;, z;],0) ¢ime se obezbeduje da linearna jednakost

—x; + x; = 0 ne bude tacna. Za ogranicenja dijagonala najpre se uvode pomocne

’https://www.minizinc.org
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promenljive x,,, koje ¢e ¢uvati razlike oblika x; — ;. Njihove vrednosti se posta-
vljaju koriS¢éenjem ogranicenja oblika int_lin_eq([1, —1, —1], [x;, ¥, Tpom], 0), ¢ime
se obezbeduje da linearna jednacina x; — x; — Zpom = 0 bude ispunjena. Dalje, uvode
se pomoc¢ne promenljive Zy.. x ¢iji su domeni oblika {0,...,7} \ k,k € {0,...,7}.
One efektivno pamte za par promenljivih x;, z; razliku njihovih indeksa ¢ — j kao
broj k koji im nedostaje u domenu. Ogranicenja oblika int_abs(Tpom, Tre- k) e sta-
raju da razlika z; — x; sacuvana u promenljivoj xp,, ne bude jednaka k, tj. i — j,
a samim tim i obezbeduju ograni¢enja dijagonala. ViSe re¢i o pomenutim FlatZinc

ogranic¢enjima dato je u glavi 3.

2.3 Problem SAT

Neka je dat najvise prebrojiv skup iskaznih promenljivih (atoma) P i skup lo-
gickih veznika { L, T, =, A, V, =, <}. Skup iskaznih formula Fp nad P formira se na

slede¢i nacin:
e atomi i logicke konstante (L, T) su iskazne formule

e ako je A iskazna formula, onda je i = A iskazna formula

e ako su A i B iskazne formule, ondasui AANB, AV B, A= B, A< B iskazne

formule

e ako je A iskazna formula, onda je i (A) iskazna formula

Valuacija v : P — {0,1} predstavlja funkciju koja dodeljuje atomima njihovu
istinitosnu vrednost. Interpretacija I, : Fp — {0,1} je funkcija indukovana va-
luacijom v koja svakoj formuli iz skupa iskaznih formula Fp dodeljuje istinitosnu

vrednost. Interpretacija se definise rekurzivno:
e [,(p) =1 akko v(p) =1, gde je p atom
e [,(T)=1,1,(L)=0

e [,(mA) =1 akko [,(A) =0

I,(AAB) =1 akko I,(A) =1iI,(B) =1

o I,(AV B) = 1 akko I,(A) = 1ili [,(B) = 1



GLAVA 2. OSNOVE

o I,(A= B) = 1 akko I,(A) = 0ili I,(B) = 1

o I,(A e B) = 1 akko I,(A) = I,(B)

Iskazna formula F’ je zadovoljiva ukoliko postoji valuacija v u kojoj se interpretira
kao ta¢na, odnosno ukoliko za neku valuaciju v vazi I,(F') = 1. Ovo ozna¢avamo sa
v | F i kazemo da je v model za F.

Problem SAT predstavlja problem ispitivanja zadovoljivosti iskazne formule u
proizvoljnom obliku®. Najéei¢e se proucava specijalni slucaj ovog problema nad
formulama u konjunktivnoj normalnoj formi (KNF). Iskazna formula F' je u KNF
ukoliko je oblika K A --- A K, gde su K;,i € {1...n} klauze, odnosno iskazne
formule oblika Iy V - -+ V I,,,, pri ¢emu su [;,j € {1...m} literali (atomi ili njihove
negacije).

Problem SAT pripada klasi NP kompletnih problema [1]|. Bitno je napomenuti
da ima veliki broj prakti¢nih primena, posto se mnogi problemi u praksi mogu svesti
na problem SAT. Veéina modernih SAT resavaca zasnovana je na CDCL algoritmu
[8], 8to im omogucava da efikasno resavaju probleme sa vise hiljada promenljivih i

viSe desetina hiljada klauza.

2.4 Svodenje problema CSP na problem SAT

Svodenje problema CSP na problem SAT pojavilo se kao ideja krajem devedese-
tih godina proslog veka [18], a glavna motivacija je bio nagli napredak u efikasnosti
SAT resavaca. Prvi pristup koji se pojavio ukljuc¢uje kodiranje kompletnog proble-
ma CSP kao iskazne formule u KNF obliku, koja se zatim predaje SAT reSavacu na

reSavanje. Postoji vise vrsta kodiranja:

e retko - svaka vrednost iz domena se kodira kao jedna iskazna promenljiva

e direktno - varijanta retkog kodiranja; za svaku nedozvoljenu kombinaciju

vrednosti promenljivih dodaje se po jedna klauza

e potporno - varijanta retkog kodiranja; koristi klauze da predstavi ograni¢enja

oblika ,,ako a ima vrednost ¢, onda b mora imati neku od vrednosti iz skupa I”

3Ponekad se u literaturi termin ,,SAT problem” odnosi isklju¢ivo na problem ispitivanja zadovo-
ljivosti iskazne formule u KNF obliku, dok se ponekad ta varijanta problema eksplicitno oznacava
kao CNF-SAT. Tako veéina SAT reSavaca ocekuje na ulazu isklju¢ivo KNF formulu, postoje i
yheklauzalni” SAT reSavaci koji mogu na ulazu dobiti iskaznu formulu u proizvoljnom obliku.
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e uredeno - za svaku vrednost a iz domena promenljive x postoji iskazna pro-

menljiva koja je tacna akko x < a

e log (binarno) - iskazne promenljive kodiraju cifre u binarnom zapisu broja

Takode, postoji moguénost da se kodiranja kombinuju u okviru jednog problema
CSP, u zavisnosti od konkretnih ogranicenja. Opisani pristup naziva se vredno ge-
nerisanje klauza (engl. eager encoding) i alat izlozen u ovom radu pociva upravo na
tom pristupu.

Alternativni pristup svodenju problema CSP na problem SAT je lenjo generisa-
nje klauza (engl. lazy clause generation (LCG)) [11]. Ovaj pristup kombinuje vrline
SAT i CSP resavaca - koriste se mehanizmi u¢enja konfliktnih klauza (engl. nogood
learning) i povratnih skokova (engl. backjumping) iz prvih, kao i propagacija ogra-
ni¢enja iz drugih. Rezultat je alat koji u osnovi ima CSP resavac, a u pozadini SAT

reSavac za koji se klauze generisu prilikom propagacije ili konflikta.
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Svodenje FlatZinc ogranic¢enja na
problem SAT

3.1 Kodiranje domena promenljivih

Kako je centralna tema ovog rada svodenje FlatZinc ogranic¢enja celobrojnog,
logickog i skupovnog tipa na problem SAT, najpre je neophodno kodirati domene
promenljivih pomenutih tipova na jezik koji SAT reSavaci razumeju - u obliku KNF
formula. Preciznije, svaka promenljiva ¢e, u zavisnosti od svog domena, doprineti
odredenim klauzama finalnoj KNF formuli koja predstavlja problem CSP. Takode,
potrebno je formirati preslikavanje koje jednoznacno odreduje vrednost promenljive
na osnovu zadovoljavajuée valuacije KNF formule. Iskazne promenljive koriséene za
kodiranje domena CSP promenljivih kasnije ¢e figurisati u kodiranju ograni¢enja nad
tim promenljivama. Treba napomenuti da se nizovske promenljive kodiraju tako $to
se svaki element niza kodira kao posebna promenljiva odgovarajuceg tipa (u daljem

tekstu oznacene sa z[i], gde je x ime niza, a ¢ indeks promenljive u nizu).

Celobrojne promenljive

Celobrojne promenljive primarno su kodirane pomoc¢u uredenog kodiranja. Kao
Sto je ranije pomenuto, ono podrazumeva uvodenje iskazne promenljive p, , za svaku

vrednost a iz domena promenljive z koja je tacna akko x < a. Formalno,

Vae{l(z)—1,...,u(x)}, praexr<a

10
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pri ¢emu su /() i u(z) donja, odnosno gornja granica domena promenljive z. Takode,
kako bi se obezbedila konzistentnost dodele (svakoj promenljivoj je dodeljena ta¢no

jedna vrednost iz domena), dodaju se sledece klauze u KNF formulu:

Vi € {l(l‘), cee ,U(Q?)}, _‘px,ifl vpm,i

kao i sledece jedini¢ne granic¢ne klauze:
Pxl(x)—1

Da,u(x)

Vrednost ovako kodirane promenljive x moze se odrediti pronalazenjem vrednosti
i € D(z) za koju vazi da je p,; tatno, a p,;—1 netatno u dobijenoj iskaznoj valua-
ciji koja zadovoljava KNF formulu (ukoliko je problem zadovoljiv, ovakva vrednost
sigurno postoji i jedinstvena je zbog uslova konzistentnosti dodele).

U slucaju da je domen promenljive oblika intervala [i, j], ovo je dovoljno za
njegovo kodiranje. Ukoliko to nije slucaj, domen se moze posmatrati kao interval
koji sadrzi ,rupe”, tj. [, 4]\ ([k1, (1] U+ - -U[kn, 1,]). Kako bi se sprecilo da promenljiva

uzme neku od nedozvoljenih vrednosti, potrebno je dodati sledece klauze:

Vi € {1 R n}, Daki—1 V "Da;

Pored uredenog kodiranja, za kodiranje celobrojnih domena je u nekoliko situ-
acija koriséeno i retko kodiranje. Kod retkog kodiranja, svaka vrednost iz domena

promenljive predstavljena je pomocu jedne iskazne promenljive:

Va € D(z), Szae =0

Kako je uredeno kodiranje primarno i primenjuje se za svaku celobrojnu promen-

ljivu, potrebno je dodati klauze koje ostvaruju vezu izmedu ove dve vrste kodiranja:

Va € D($), Sz,a < Pz.a A Pzra—1

odnosno nakon svodenja na KNF:

(_'Sm,a V p:ﬂ,a) A (_‘Sm,a V _'px,a—l) A\ (Sm,a V Pz.a V pm,a—l)

Bitno je napomenuti da, u sluc¢aju retkog kodiranja, nije potrebno dodavati kla-
uze koje obezbeduju konzistentnost dodele, posto je to implicitno uradeno vezom sa

uredenim kodiranjem.

11
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Logicke promenljive

Svaka logicka promenljiva moze se jednostavno kodirati pomocu jedne iskazne

promenljive:

qz & T = true

Skupovne promenljive

U jeziku FlatZinc, domen skupovne promenljive z je partitivni skup nekog datog
skupa A, (tj. D(z) = P(A.)). Skupovne promenljive kodirane su pomocéu niza
iskaznih promenljivih, pri ¢emu iskazna promenljiva r, , govori da li je element a iz

skupa A, ukljuc¢en u vrednost promenljive z ili ne:

Va € Ay, TS aET

Moze se primetiti da u slu¢aju valuacije koja dodeljuje svim 7., za a € D(x)

vrednost neta¢no, x postaje prazan skup.

3.2 Pomoéni koncepti

Pre samog kodiranja ogranicenja, u ovom odeljku biée izlozeno nekoliko pomo¢-
nih koncepata koji olaksavaju dalji proces kodiranja. Nakon toga, bi¢e prikazan sam
proces kodiranja pojedina¢nih ogranic¢enja, podeljenih po tipu. Tezice se da slicna
ograni¢enja budu grupisana, kao i da se u slucaju kada kodiranje jednog ogranicenja
moze posluziti kao osnov za kodiranje drugog, uvek prvo bude izloZzeno jednostavnije
ogranicenje. Takode, bié¢e izlozen primer koji ilustruje kodiranje razli¢itih ogranice-

nja na konkretnom FlatZinc modelu.

Kodiranje primitivnog zbira/razlike

Kao $to je detaljnije objasnjeno u literaturi [12], kodiranje primitivnog zbira
oblika z +y < ¢, pri ¢emu su x i y celobrojne promenljive, a ¢ celobrojna konstanta,

moze se izvrSiti uredenim kodiranjem na sledeéi nacin:

/\ (px,a \ py,b)

a+b=c—1

12
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Parametri a i b su celobrojni i vazi a € {l(xz) — 1,...,u(x)}, b € {l(y) —
1

pri ¢emu za parametar b vazi b € {—u(y) — 1,...,—I(y)}, a umesto literala p,;,

,...,u(y)}. Sliéna je situacija kada je u pitanju primitivna razlika oblika z —y < ¢,
dodaje se literal —p, 1.

Dodatno, u oba sluc¢aja pre kodiranja treba povesti ra¢una da li su granic¢ni uslovi
zadovoljeni, tj. da li vazi ¢ > I(z) + l(y) u slu¢aju zbira, odnosno ¢ > I(z) — r(y) u

slucaju razlike. Ukoliko to nije sluc¢aj, nejednakost ne moze biti zadovoljena.

Koriséenje pomoénih promenljivih

U situaciji kada je iskaznu formulu u DNF-u (formula oblika \/"_, /\;”:1 pij. gde
su p;; literali) potrebno prebaciti u KNF, kako bi se smanjio rezultujuci broj klauza
moguce je iskoristiti pomoc¢ne promenljive. Ovo dolazi uz cenu odrzavanja ekviza-

dovoljivosti! formule, ali ne i ekvivalentnosti. Konverzija se vrsi na sledeéi nacin:

\/ /\pij = /\ /\(pij V =h;)

i=1j=1 i=1j=1

pri ¢emu je potrebno dodati i disjunkciju pomoénih promenljivih:

Ekvivalencijski oblik ogranicenja

Neka primitivna FlatZinc ogranic¢enja se javljaju i u ekvivalencijskom obliku
(engl. reified):

constr & r

gde je constr FlatZinc primitivno ogranic¢enje, a r logicka FlatZinc promenljiva.
Ako pretpostavimo da je ogranic¢enje constr kodirano pomocu slede¢e KNF for-

mule:
n m
AV vy
i=1j=1

onda se njegov ekvivalencijski oblik kodira po slede¢em principu (simbol — oznacava

kodiranje):

'Dve iskazne formule su ekvizadovoljive ukoliko su obe zadovoljive ili obe nezadovoljive

13
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n

i=1j=1
(=1 A \/ /\_‘pij> Vo (r A /\ \/ Dij) (3.2)
i=1j=1 i=1j=1

Leva strana disjunkcije (3.2) doprinosi slede¢im klauzama:

-V _|H1

A Ny v —hs)

i=1j=1
(\/ hi) v ~H,
=1

Desna strana disjunkcije (3.2) doprinosi slede¢im klauzama:

TV_|H2

n

A pi) vV —H;

i=1 j=1
Najzad, kako mora vaziti leva ili desna strana disjunkcije (3.2), dodaje se sledeca

klauza (pri ¢emu su sa H; i Hy oznacene pomocéne promenljive):

H,V H,

Problem nastaje ukoliko se medu klauzama ogranic¢enja koje se prevodi u ekviva-
lencijski oblik nalaze pomoéne promenljive. Kako koriéenje pomoc¢nih promenljivih
odrzava ekvizadovoljivost, ali ne i ekvivalentnost formule, gorenavedenim pristu-
pom se neé¢e ocuvati ekvivalentnost izmedu zadovoljenosti ogranicenja i vrednosti
promenljive r. Ovo je reSeno ili raspisivanjem originalnog ogranic¢enja bez pomoc¢nih
promenljivih, po cenu veceg broja klauza, ili prilagodavanjem pomoé¢nih promen-
ljivih tako da odrze ekvivalentnost formule (na primer, umesto p;; V —h; koristimo
(pij V =hi) A (7pig V hi)).

Pored ekvivalencijskog, postoji i implikacijski oblik ogranic¢enja:

r = constr

14
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Kodira se relativno jednostavno, posto se implikacija moze lako svesti na dis-

junkciju:

r = /\\/pwi—>/\(\/p”>\/_ﬂ"

i=1j=1 i=1 j=1
Vredi napomenuti da je i ovde potrebno voditi racuna da li se u ogranicenju koje

se prevodi u implikacijski oblik koriste pomoéne promenljive.

Kodiranje supstitucija

U nekoliko ogranic¢enja, deo postupka kodiranja ukljucuje kodiranje supstitucija
oblika x = ¢ - x1 + ¢ - 9, pri ¢emu je x novouvedena promenljiva. Prvi korak je

odredivanje granica domena nove promenljive:

l(x) =min(cy - U(z1),c1 - u(zy)) + min(cg - U(z2), ¢ - u(z2))

max(cy - U(z1), ¢1 - u(zy)) + max(ce - 1(x2), c2 - u(xs))

=
E
I

Nakon toga, supstitucija se kodira po slede¢em principu, detaljnije objasnjenom

u literaturi [12]:

—x+c 1t <0 A T—cx1—C-29<0

Prvi konjunkt kodira se na slede¢i nacin:

/\ (_'p:v,—i—l Vv Pzi,a \ p$2,b)

i+jrh=—2
pri ¢emu i € {—u(z) —1,....,=l(z)}, 7 € {l(cx-2z1) — 1,...,u(cy - )} 1 k €
{l(ca-x2) —1,...,u(ca - x2)}, a parametri a i b se odreduju na osnovu koeficijenata

¢1 1 ¢o. Ukoliko vazi ¢; > 0, onda je a = |j/c1], a ina¢e a = [j/c1] — 11 literal koji
ukljucuje a je negiran. Ukoliko vazi co > 0, onda je b = |k/co], ainace b = [k/ca] —1
i literal koji ukljucuje b je negiran.

Drugi konjunkt kodira se na nacin slican prvom:

/\ (px,l V p:pl,a V pxz,b)

it jth=—2
pri cemu i € {l(z) —1,...,u(x)}, 7 € {l(—c1-x1) = 1,...;u(—c1 - x1)} i k €
{l(=co-22)—1,...,u(—cy-22)}, a parametri a i b se odreduju na osnovu koeficijenata
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¢1 1 ¢o. Ukoliko vazi ¢; < 0, onda je a = —|j/c1], a inace a = —[j/c1| — 11 literal
koji ukljuc¢uje a je negiran. Ukoliko vazi ¢; < 0, onda je b = —|k/c2], a inace

b= —[k/cy] — 11 literal koji ukljucuje b je negiran.

Koriséenje parametara umesto promenljivih

U FlatZinc modelima postoji moguénost da se na mestu argumenta koji je na-
znacen kao promenljiva nade parametar, ali ne i obratno. Ovo je reSeno uvodenjem
pomoc¢nih FlatZinc promenljivih koje ne ucestvuju u ispisu i imaju fiksirane vred-
nosti.

Ukoliko celobrojni parametar ima vrednost a, kodira se na sledeé¢i nacin:

Pza
Pza—1

Ukoliko logi¢ki parametar ima vrednost true, bi¢e kodiran jedini¢cnom klauzom

dpom, 0dnosno ukoliko ima vrednost false jedini¢nom klauzom —gyep,.

Ukoliko skupovni parametar ima vrednosti aq,...,a,, bi¢e kodiran jedini¢nim
klauzama:
T'pom,a
T'pom,an

3.3 Celobrojna ogranicenja

Kao sto je pomenuto u prethodnom odeljku, u ovom odeljku biée izlozeni nacini

kodiranja pojedinac¢nih celobrojnih ogranic¢enja.

Ogranicenje int le
Ovo ogranic¢enje ima oblik:
int_le(var int : a, var int : b)

i zahteva da vazi nejednakost a < b. Moze se svesti na kodiranje primitivne razlike
a—0b<O0.

16
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Ogranicenje int 1t
Ovo ogranicenje ima oblik:
int_lt(var int : a, var int : b)

i zahteva da vazi nejednakost a < b. Moze se svesti na kodiranje primitivne razlike
a—b<-—1.

Ogranicenje int _eq
Ovo ogranic¢enje ima oblik:
int_eq(var int : a, var int : b)

i zahteva da vazi jednakost a = b. MoZe se svesti na kodiranje ogranic¢enja int le(a,b)

iint le(b,a), a zatim konjunkciju dobijenih KNF formula.

Ogranicenje int ne
Ovo ogranic¢enje ima oblik:
int_ne(var int : a, var int : b)

i zahteva da vazi nejednakost a # b. Moze se svesti na kodiranje ogranicenja
int_lt(a,b) iint_lt(b,a), a zatim disjunkciju dobijenih KNF formula. Kako bi do-
bijena formula ostala u KNF-u, mogu se iskoristiti dve pomoéne promenljive h i
hs. KNF formula dobijena kodiranjem prvog ograni¢enja prevodi se u njoj ekviza-

dovoljivu formulu:

ny mi ni mi

/\ \/pij = /\(_‘hl N \/pij)

i=1j=1 i=1 j=1

Slicno vazi i za KNF formulu dobijenu kodiranjem drugog ogranic¢enja:

n2 ma n2 ma2

/\ \/pij = /\(_'hz \ \/pij)

i=1j=1 i=1 j=1
Najzad, kako mora biti zadovoljeno barem jedno od dva ogranicenja, dodaje se

sledeéa klauza:

hiV ho
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Ogranicenje int max
Ovo ogranicenje ima oblik:
int_max(var int : a, var int : b, var int : c)

i zahteva da vazi max(a,b) = c. Ideja kodiranja je sledeca:

a<c N b<c AN (¢c<aVvce<))

Moze se svesti na konjunkciju KNF formula dobijenih kodiranjem ogranicenja
int_le(a,c) iint_le(b,c), a zatim konjunkciju te formule sa disjunkcijom KNF for-
mula dobijenih kodiranjem ogranicenja int le(c,a)iint_le(c,b). Kako bi pomenuta
disjunkcija ostala u KNF-u, moguée je upotrebiti pomoéne promenljive, sli¢no kao

kod ogranicenja int_ne.
Ogranicenje int min
Ovo ogranic¢enje ima oblik:
int_min(var int : a, var int : b, var int : c)
i zahteva da vazi min(a,b) = c. Ideja kodiranja je sledeca:

c<a N ¢<b AN (a<cVb<c)

Moze se svesti na konjunkciju KNF formula dobijenih kodiranjem ogranic¢enja
int_le(c,a) iint_le(c,b), a zatim konjunkciju te formule sa disjunkcijom KNF for-
mula dobijenih kodiranjem ogranicenja int le(a,c)iint_le(b, ¢). Kako bi pomenuta
disjunkcija ostala u KNF-u, moguée je upotrebiti pomoéne promenljive, slicno kao
kod ogranicenja int_ne.

Ogranicenje int _abs

Ovo ogranic¢enje ima oblik:

int_abs(var int : a, var int : b)

i zahteva da vazi |a| = b. Ideja kodiranja je sledeca:

max(a,—a) =b
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Sto je ekvivalentno sa:

a<b AN —a<b AN (b<aVvb< —a)

Prvi konjunkt se moze dobiti kodiranjem ograni¢enja int le(a,b). Drugi ko-
njunkt se svodi na slede¢u nejednakost: a + b > 0; odnosno na negaciju kodiranja
primitivnog zbira a+b < —1. Kako se negacijom KNF formule dobija DNF formula,
koriste se pomoc¢ne promenljive da bi se odrzao KNF oblik. Treéi konjunkt je zapra-
vo disjunkcija formula dobijenih kodiranjem ogranic¢enja int le(a,b) i primitivnog
zbira a+b < 0. Kako bi pomenuta disjunkcija ostala u KNF-u, moguée je upotrebiti

pomoc¢ne promenljive, slicno kao kod ogranic¢enja int_ne.
Ogranicenje int plus
Ovo ogranicenje ima oblik:
int_plus(var int : a, var int : b, var int : c)

i zahteva da vazi jednakost a+b = c. Svodi se na kodiranje supstitucije ¢ = ¢;-a+co-b,
pri ¢emu su oba koeficijenta jednaka 1, a granice domena promenljive ¢ su unapred

poznate.
Ogranicenje array int element
Ovo ogranic¢enje ima oblik:
array _int_element(var int : b, array [int] of int : as, var int : c)

i zahteva da vazi jednakost as[b] = ¢, pri ¢emu je as niz celobrojnih konstanti. Ideja

kodiranja je sledeca:

\/ b=1iAc=asli]

ieD(b)NI(as)
pri ¢emu je I(as) skup indeksa niza as. Jednakost b = ¢ kodira se pomocu dve

jedini¢ne klauze:

Db,i

Pbi—1
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Analogno tome se kodira i jednakost ¢ = as[i]. Kako bi formula bila u KNF

obliku, koriste se pomoc¢ne promenljive.

Ogranicenje array int var element
Ovo ogranicenje ima oblik:
array_int_wvar__element(var int : b, array [int] of var int : as, var int : c)

i zahteva da vazi jednakost as[b] = ¢, pri ¢emu je as niz celobrojnih promenljivih.
Kodira se analogno ograni¢enju array int _element, osim §to se jednakost ¢ = asli]
ovog puta svodi na kodiranje ogranicenja int _eq(c, aslil).
Ogranicenje array int maximum

Ovo ogranic¢enje ima oblik:

array _int_mazimum(var int : m, array [int] of int : )

i zahteva da promenljiva m bude jednaka maksimalnoj vrednosti iz niza z. Ideja

kodiranja je sledeca:

N m=zli] A () m<al)
)

i€l(x i€l(x)

Poredenja m > x[i] i m < z[i] svode se na kodiranje ograni¢enja int le(z[i],m),
odnosno int_le(m, x[i]). Kako bi disjunkcija sa desne strane ostala u KNF-u, koriste
se pomoc¢ne promenljive.

Ogranicenje array int minimum

Ovo ogranicenje ima oblik:

array _int_minimum(var int : m, array [int] of int : x)

i zahteva da promenljiva m bude jednaka minimalnoj vrednosti iz niza x. Ideja

kodiranja je sledeca:
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Poredenja m < x[i] i m > z[i] svode se na kodiranje ograni¢enja int le(m, x[i]),
odnosno int_le(x[i], m). Kako bi disjunkcija sa desne strane ostala u KNF-u, koriste

se pomo¢ne promenljive.

Ogranicenje int times
Ovo ogranic¢enje ima oblik:
int_times(var int : a, var int : b, var int : c)

i zahteva da vazi jednakost a-b = ¢. U osnovi kodiranja nalazi se ideja da se vrednost
promenljive ¢ ogranic¢i vrednostima promenljivih a i b. U slu¢aju da su svi elementi
domena ¢inilaca nenegativni, usled monotonosti operacije mnozenja, ovo je moguce

postié¢i ispunjavanjem sledecih uslova:

Vie D(a),j € D(b) (a<iANb<j=c<i-j) (3.3)
Vie D(a),je€D(b) (a>iAb>j=c>i-j) (3.4)

Gorenavedeni uslovi ekvivalentni su sledeéim klauzama:

Vi€ D(a),j € D) (=PaiV "Pb; V Peyij) (3.5)
Vie D(a),j € D(b) (Pai-1V Pbj—1V "Deij—1) (3.6)

U slucaju da je i-j > u(c) formula (3.3) je tautologija, pa se ne mora dodavati.
Sli¢no vazi za formulu (3.4) kada je ispunjen uslov i - j < (c).

U slucaju da je i - j < I(c), promenljiva p.;; ¢e biti uvek netacna, pa se ne
mora dodavati u formulu (3.3). Sli¢no vazi za formulu (3.4) kada je ispunjen uslov
i-7 > u(c); literal —p,;.j_1 ¢e biti uvek netacan, pa se ne mora dodavati u formulu.

Ukoliko nisu svi elementi domena ¢inilaca isklju¢ivo nenegativni, uslove (3.1) i

(3.2) je potrebno preformulisati:

(V?TL“.Z\4Z € D(a))(ij,Mj S D(b)) (’ITLZ <a< M, /\TTLj <b< Mj
=c< M,)
(le,MZ S D(a))(ij,Mj S D(b)) (m, S a S MZ /\mj S b S Mj

= c>me)

21



GLAVA 3. SVOPENJE FLATZINC OGRANICENJA NA PROBLEM SAT

gde je Mc = maac(mi sy, My Mj,Mi smy, Mz . Mj), me, = mm(mz sy, My Mj, Mz .
mj, M; - M;) i vazi m; < M;, odnosno m; < M,.

Dobijene klauze su ovaj put sledece:

Pa,m;—1 Vv “Pa,M; vpb,mj—l V _‘pb,Mj V DPe, M. (37)

Pa,m;—1 V “Pa,M; V pb,mjfl V _'pb,Mj V Pe,me—1 (38)

Formula (3.5) se moZe obrisati u slu¢aju da je u(c) < M., a u slu¢aju da vazi
l(c) > M., literal p. ;. se moze ukloniti iz nje.

Sli¢no, formula (3.6) se moze obrisati u slucaju da je ((c) > m,, a u slucaju da

vazi u(c) < M., literal p.,,,—1 se moze ukloniti iz nje.

Ogranicenje int div
Ovo ogranic¢enje ima oblik:
int__div(var int : a, var int : b, var int : c)

i zahteva da vazi jednakost a/b = ¢, gde je / operator celobrojnog deljenja. Iz
jednakosti a/b = ¢ sledi:

a=b-c+r

za neko r € {0,...,b— 1}. Dakle, u slu¢aju pozitivnih domena promenljivih, bilo bi

dovoljno kodirati sledeé¢e uslove:

a=b-c+r AN r>0 AN r<b-1

Ipak, kako domeni celobrojnih promenljivih mogu ukljuc¢ivati negativne vred-
nosti, treba voditi ra¢una na koji nacin ,zaokruziti” koli¢nik. Npr. —5/2 mozZe se
tumaciti kao —2 ili —3 u zavisnosti od znaka ostatka. Kako je u jeziku MiniZinc
generalno praksa da ostatak ima isti znak kao deljenik, u gorenavedenom slucaju
ostatak bi bio —1, a koli¢nik —2. Kako bi se ispostovao ovaj uslov, kodiranje ide po

slede¢em principu:
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a=b-c+r A
el <[] A
a>0=r>0 A

a<0=1r<0

Prvi konjunkt se dobija uvodenjem pomocne celobrojne promenljive bc i ogra-
nicenja int_times(b, c,bc), a zatim i ogranicenja int_plus(be,r, a). Drugi konjunkt
se dobija uvodenjem pomo¢nih celobrojnih promenljivih 7' i &/, a zatim i ogranice-
nja int _abs(r,r’), int_abs(b,b') iint_lt(r', V). Tredi i Getvrti konjunkt svode se na

jednostavne disjunkcije literala:

Pa,—1 V “Pr.—1
_‘pa,O V pr,O

Ogranicenje int mod
Ovo ogranicenje ima oblik:
int_mod(var int : a, var int : b, var int : c)

i zahteva da vazi jednakost a%b = ¢, gde je % operator ra¢unanja ostatka pri celo-
brojnom deljenju. Kodira se analogno ogranicenju int div, osim $to ulogu ostatka

r preuzima promenljiva ¢, a koli¢nik je ovog puta pomoéna promenljiva p.

Ogranicenje int pow

Ovo ogranic¢enje ima oblik:
int_pow(var int : x, var int :y, var int : z)

i zahteva da vazi jednakost ¥ = z. Za kodiranje ovog ogranic¢enja koriséeno je retko

kodiranje:

\/ Sz N Syj N S,
i€D(z),j€D(y)
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Kako je navedena formula u DNF-u, koris¢ene su pomoc¢ne promenljive kako bi
bila prebacena u KNF. Takode, nema potrebe dodavati klauze kod kojih ¢ ¢ D(z).
Specijalno, u slu¢aju da ne postoje i € D(x)ij € D(y) za koje vazi i/ € D(z), gornja
disjunkcija postaje prazna. Na taj nacin nastaje prazna klauza, $to je ekvivalentno

sa L, pa formula postaje nezadovoljiva.

Ogranicenje int lin le
Ovo ogranic¢enje ima oblik:
int_lin_le(array [int] of int : as, array [int] of var int : bs, int : c)

i zahteva da vazi nejednakost > as[i] - bs[i] < ¢, pri ¢emu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova dva

niza. Kodiranje ovog ograni¢enja oslanja se na supstitucije ([12]):

x1 = as[1] - bs[1] + as[2] - bs[2]
Vie{2...n—1} x; =z +as[i+1]bs[i+ 1]

Na ovaj nacin postiZe se da promenljiva x,_; predstavlja sumu >, asi] - bs[i].
Kako bi se ogranicenje kodiralo, preostaje jos kodiranje same nejednakosti, korisée-
njem int_le(z,_1,c).
Ogranicenje int lin eq

Ovo ogranicenje ima oblik:

int_lin_eq(array [int] of int : as, array [int] of var int : bs, int : c)

i zahteva da vazi nejednakost > | as[i] - bs[i] = ¢, pri ¢emu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova
dva niza. Kodira se analogno ogranic¢enju int [lin_le, osim $to se na kraju koristi
ogranicenje int _eq(x,_1,c).
Ogranicenje int lin ne

Ovo ogranic¢enje ima oblik:

int_lin_ne(array [int] of int : as, array [int] of var int : bs, int : c)
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i zahteva da vazi nejednakost > 7 | as[i] - bs[i] # ¢, pri ¢emu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova
dva niza. Kodira se analogno ogranicenju int [lin_le, osim $to se na kraju koristi
ogranicenje int_ne(r,_1,c).

Ekvivalencijski oblici ogranicenja

Ogranicenja: int _eq_reif, int_le reif,int lin eq reif,int lin le reif, int lin ne reif,
int It reif, int ne reif, kao i njihove verzije sa implikacijom (sufiks _imp, umesto
_reif), kodiraju se ranije opisanim postupkom kodiranja ekvivalencijskih, odnosno

implikacijskih oblika ogranic¢enja.

3.4 Logicka ogranicenja

U ovom odeljku bice izloZeni nac¢ini kodiranja pojedinac¢nih logickih ogranic¢enja.

Ogranicenje bool le
Ovo ogranic¢enje ima oblik:
bool _le(var bool : x, var bool : y)

i zahteva da vazi x < y, pri ¢emu se smatra da vazi uredenje u kome je vrednost

logicke promenljive tacno veca od vrednosti netacno. Kodira se slede¢om klauzom:
4y \ qy

Ogranicenje bool 1t
Ovo ogranic¢enje ima oblik:
bool _lt(var bool : x, var bool : y)

i zahteva da vazi x < y, pri ¢emu se smatra da vazi isto uredenje kao u ograni¢enju

bool le. Kodira se sledeé¢im jedini¢nim klauzama:

Gy
dy
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Ogranicenje bool eq

Ovo ogranicenje ima oblik:
bool _eq(var bool : x, var bool : y)

i zahteva da vazi r = y. Kodira se na sledeé¢i nacin:
(42 V =qy) N (242 V qy)

Ogranicenje bool not

Ovo ogranic¢enje ima oblik:
bool _not(var bool : x, var bool : y)

i zahteva da vazi x # y. Kodira se na sledeé¢i nacin:
(¢ V Qy) A (7Gx V _‘Qy)

Ogranicenje bool xor

Ovo ogranic¢enje ima dva razli¢ita oblika. Prvi oblik je:
bool _zor(var bool : x, var bool : y)

i zahteva da izraz x @y bude tacan, pri ¢emu je & operator ekskluzivne disjunkcije.
Kako je @y tacno akko vazi x # y, kodiranje ovog ogranic¢enja svodi se na kodiranje
ogranicenja bool _not(x,y).

Drugi oblik ovog ogranicenja je:
bool _zxor(var bool : a, var bool : b, var bool : r)

1 zahteva da vazi r & a @© b. Kodira se na sledeéi nacin:

(@@VaeVg) N (7gV-ogV-g) A
A

(G V@V q) (¢aV @V qr)
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Ogranicenje bool and

Ovo ogranicenje ima oblik:
bool _and(var bool : a, var bool : b, var bool : )

1 zahteva da vaZzi r & a A b. Kodira se na sledeéi nacin:
(Ga V=) A@p V =) A (=qa V =g V Gr)
Ogranicenje bool or
Ovo ogranic¢enje ima oblik:

bool _or(var bool : a, var bool : b, var bool : r)

1 zahteva da vazi r & a V b. Kodira se na slede¢i nacin:
(V@) N (=g V @) A (g V @5V G)

Ogranicenje bool clause

Ovo ogranicenje ima oblik:
bool _clause(array [int] of var bool : as, array [int] of var bool : bs)

i zahteva da disjunkcija (\/;_, ali]) v (V/]_, =b[j]) bude ta¢na. Kako oba niza sadrze

logicke promenljive, kodiranje se svodi na dodavanje jedne klauze:

\/qa[z \/ i)

Ogranicenje array bool and

Ovo ogranic¢enje ima oblik:
array_bool _and(array [int] of var bool : as, var bool : 1)

i zahteva da vazir < A._, as[i]. Navedeni izraz moze se svesti na KNF oblik slede¢im

transformacijama:
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r & /\as[i] =

(—r Vv /\as[i]) A (rV - /\as[i]) =

N\ (=rvasli]) A (rv \/ —asi])

i=1

Za kodiranje krajnjeg izraza koriste se sledece klauze:

Vi € {1, - ,n} (—|q7» V qas[i])

qr vV \/ asli]

=1

Ogranicenje array bool or

Ovo ogranicenje ima oblik:

array_bool _or(array [int] of var bool : as, var bool : r)

i zahteva da vazi r < \/!_ as[i]. Navedeni izraz moze se svesti na KNF oblik slede¢im

transformacijama:
re \/ asli| =
i=1
(—r Vv \/as[z']) A (rV = \/ asli]) =
i=1 i=1

(=r Vv \/as[i]) A /\(r V —asli])

Za kodiranje krajnjeg izraza koriste se sledece klauze:

Vie{l,....,n} (¢ V qus))

—qr V \/ Qas[i]

=1
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Ogranicenje array bool element
Ovo ogranicenje ima oblik:
array _bool _element(var int : b, array [int] of bool : as, var bool : c)

i zahteva da vazi as[b] = ¢, pri ¢emu je as niz logickih konstanti. Ideja kodiranja je

sledeca:

\/ b=1iAc=asl]

i€D(b)NI(as)
pri ¢emu je I(as) skup indeksa niza as. Jednakost b = ¢ kodira se pomocu dve

jedini¢ne klauze:

Db,

Pb,i—1

Kodiranje jednakosti ¢ = as[i] svodi se na proveru vrednosti konstante asi].
Ukoliko je ta vrednost tacno, dodaje se jedini¢na klauza g.. U suprotnom, dodaje
se jedini¢na klauza —q.. Kako bi formula bila u KNF obliku, koriste se pomocne

promenljive.

Ogranicenje array var bool element

Ovo ogranic¢enje ima oblik:

array_var_bool _element(var int : b, array [int] of var bool : as, var bool : c)

i zahteva da vazi as[b] = ¢, pri ¢emu je as niz logickih promenljivih. Kodira se
analogno ogranic¢enju array_bool _element, osim $§to se jednakost ¢ = as|i] ovog
puta svodi na kodiranje ogranicenja bool _eq(c, asli]).
Ogranicenje bool lin eq

Ovo ogranic¢enje ima oblik:

bool lin _eq(array [int] of int : as, array [int] of var bool : bs, var int : c)

i zahteva da vazi jednakost Y | as[i] - bs[i] = ¢, pri ¢emu je as niz celobrojnih

konstanti, bs niz logickih promenljivih, a n broj elemenata u svakom od ova dva
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niza. U praksi, niz as najcesé¢e Cine vrednosti 0 i 1, pa se ovo ogranicenje svodi
na ogranic¢enje kardinalnosti - vrednost promenljive ¢ diktira koliko ¢e elemenata
niza bs uz koje je koeficijent 1 biti tacno. Kodiranje ovog ograni¢enja oslanja se na

supstitucije, slicno celobrojnim linearnim ogranicenjima:

x1 = as[1] - bs[1] + as[2] - bs[2]
Vie{2...n—1} z;=x;_1+as[i+1]-bs[i+ 1]

Pri ¢emu se u ovom kontekstu logicke promenljive bs[i] posmatraju kao celobrojne
promenljive sa domenom {0,1}. Takode, pri kodiranju pojedinac¢nih supstitucija,
za pomoc¢ne promenljive x; koriséeno je retko kodiranje, pa kodiranje supstitucije

T = 1 - x1 + ¢ - Ty funkcioniSe po sledeé¢em principu:

\/ (82,0 A Sy, N Sza k)

i=c1jteak
pri ¢emu vazi i € D(z), j € D(z1) i k € D(x5). Gorenavedena formula je u DNF-u,
pa se za konverziju u KNF koriste pomoéne promenljive. Treba napomenuti da se, u
slucaju da je x; ili x9 zapravo jedna od logickih promenljivih bs[i], umesto iskaznih
promenljivih s, ;(ili 54, %) koriste literali gyyp;) ili ~gpsp, 1 zavisnosti od toga da li je

J (ili k) jednako 1 ili 0, respektivno.
Kako bi se ogranic¢enje kodiralo, preostaje jos kodiranje same jednakosti, kori-

S¢enjem ogranicenja int _eq(x,_1,c).

Ogranicenje bool lin le
Ovo ogranicenje ima oblik:
bool _lin_le(array [int] of int : as, array [int] of var bool : bs, var int : c)

i zahteva da vazi nejednakost > 7 | as[i] - bs[i] # ¢, pri Gemu je as niz celobrojnih
konstanti, bs niz logickih promenljivih, a n broj elemenata u svakom od ova dva niza.
Kodira se analogno ogranic¢enju bool lin__eq, osim §to se na kraju koristi ogranicenje

int_le(x,_1,c).
Ogranicenje array bool xor

Ovo ogranic¢enje ima oblik:

array_bool _xor(array [int] of var bool : as)
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i zahteva da formula @ ;as[i] bude ta¢na, pri ¢emu je n broj elemenata niza as.

Pri kodiranju, uvode se slede¢e pomoéne promenljive:

r = as[l] @ as|2]
Vie{2...n—=2} ri=r_1®as[i+1]

pri ¢emu se kodiranje jednakosti r; = as[1] @ as[2] svodi na kodiranje ograni¢enja
bool _xor(as|[l],as[2],r1). Po zavrsetku kodiranja gorenavedenih jednakosti, u pro-
menljivoj r,_, sauvana je vrednost izraza @~ as[i]. Kako bi se osiguralo da formula
@I as[i] bude ta¢na, potrebno je obezbediti da vrednosti promenljivih 7, 5 1 as[n]
budu razlic¢ite. Ovo se moZe postiéi kodiranjem ograni¢enja int _xor(r,_s, as[n]).

Ogranic¢enje bool2int

Ovo ogranic¢enje ima oblik:
bool2int(var bool : a, var int : b)

i zahteva da se domen promenljive b svede na {0, 1} i da vazi ekvivalencija a < (b =

1). Moze se kodirati na sledeé¢i nacin:

(~aA(b=0)) V (aA(b=1))

Sto je ekvivalentno sa:

(=qa APbo A Do—1) V(G A Do A —Pbo)

Gorenavedena formula je u DNF-u, pa se koriséenjem dve pomocne promenljive
svodi na KNF.

Ogranicenje bool eq reif

Ovo ogranic¢enje ima oblik:
bool _eq reif(var bool : a, var int : b, var int : r)

i zahteva da vazi r < (a = b). Kodira se dodavanjem slede¢ih klauza:
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qr vV 7Ga NV G
qr V4oV @

G- V Qo V @
qr V qa V @

Ogranicenje bool le reif

Ovo ogranic¢enje ima oblik:
bool le reif(var bool : a, var int : b, var int : r)

i zahteva da vazi r < (a < b). Kodira se dodavanjem slede¢ih klauza:

G NV G V @
qr V qa
qr NV

Ogranicenje bool 1t reif

Ovo ogranic¢enje ima oblik:
bool It reif(var bool : a, var int : b, var int : r)

i zahteva da vazi r < (a < b). Kodira se dodavanjem slede¢ih klauza:

Gr vV Qo V Qp
G- V Qg
=GV @
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3.5 Skupovna ogranicenja

U ovom odeljku biée izlozeni nac¢ini kodiranja pojedinac¢nih skupovnih ogranice-

nja.

Ogranicenje set in
Ovo ogranic¢enje ima dva razli¢ita oblika. Prvi oblik je:
set_in(var int : x, set of int : S)

i zahteva da vazi x € S, pri ¢emu je S skupovni parametar. Ideja kodiranja je

sledeca:

Sto je ekvivalentno sa:

\/ Dai N\ TPzi-1
1€SND(x)

Kako je formula iznad u DNF-u, za prevodenje u KNF se koriste pomoé¢ne pro-
menljive.

Drugi oblik ovog ogranic¢enja je:
set_in(var int : z, var set of int : S)

i zahteva da vazi z € S, pri ¢emu je S skupovna promenljiva. Ideja kodiranja je

sledeca:

\V/ @=ir@es) (3.9)

iEAsﬂD(:E)
Podsetimo se, domen skupovne promenljive S se u jeziku FlatZinc definiSe kao
partitivni skup nekog datog skupa Ag, tj. D(S) = P(Ag). Formula (3.9) je ekviva-

lentna sa:

\/ Paji N TPaji-1 A Ts,i
’iGAsﬂD(I)

Kako je formula iznad u DNF-u, za prevodenje u KNF se koriste pomo¢ne pro-

menljive.
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Ogranicenje set eq
Ovo ogranicenje ima oblik:
set _eq(var set of int : x, var set of int : y)

i zahteva da vazi x = y. Kodiranje se vrsi na slede¢i nacin:

(\V/Z S Ax \ Ay) T
(VZ & Ay \ Ax) _‘ry,i
(Vi€ AgNAy)  (reiV —rys) A(—ra; Vry,)

Ogranicenje set ne
Ovo ogranicenje ima oblik:
set_ne(var set of int : x, var set of int : y)

i zahteva da vazi x # y. Kodiranje se vrsi na sledeé¢i nacin:

(VZ € Ax N Ay) (rx,ivry.i vV ﬁhl) A (_'Tgm' V Ty V ﬁhl)

(V mdve ) rnve Vo h

i€AL\Ay JEAY\ Ay kEALUA,

Ogranicenje set subset
Ovo ogranic¢enje ima oblik:
set _subset(var set of int : x, var set of int : y)

i zahteva da vazi x C y. Kodiranje se vrsi na sledec¢i nacin:

(Vie A, \Ay) 7y
(VZ - Ax N Ay) <_‘T:v,i V Ty,i)

Ogranicenje set superset
Ovo ogranic¢enje ima oblik:
set _superset(var set of int : x, var set of int : y)

i zahteva da vazi x O y. Svodi se na kodiranje ograni¢enja set subset(y, ).
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Ogranicenje set intersect
Ovo ogranicenje ima oblik:
set_intersect(var set of int : x, var set of int :y, var set of int : z)

i zahteva da vazi z = x N y. Kodira se na slede¢i nacin:

(Vie A, \Ay) -y,
(VZ € Ay \ AI) Tz
(VZ € Ax N Ay) Tyi <& (rx,i A\ T’yﬂ')

pri ¢emu se kodiranje gornje ekvivalencije svodi na kodiranje ogranic¢enja

bool _and(ry;,7y.i,72,)-

Ogranicenje set union
Ovo ogranic¢enje ima oblik:
set _union(var set of int : x, var set of int :y, var set of int: z)

i zahteva da vazi z = x U y. Kodira se na slede¢i nacin:

(Vz c Az \ Ay) (T;E,i V _'rz.i) A (_‘rx,i \ rz,i)
(Vie Ay\ Ag)  (rya V=) A (21 V ray)
(Vi€ AuMAY) 1.5 (re; V)

pri ¢emu se kodiranje gornje ekvivalencije svodi na kodiranje ogranic¢enja

bool _or (14, Tyi,T24)-
Ogranicenje set diff
Ovo ogranic¢enje ima oblik:

set _dif f(var set of int : x, var set of int :y, var set of int : z)

i zahteva da vazi z = z \ y. Kodira se na sledeéi nacin:

(Vi€ Ag\Ay)  (raqV —ras) A(mra; Vrsy)
(Vie A, N Ay) (_‘Tz,i \ szi) A (_‘Tz,z‘ v _‘Ty,i) N (Tz,i Vg V TyJ)
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Ogranicenje set symdiff
Ovo ogranicenje ima oblik:
set_symdif f(var set of int : x, var set of int :y, var set of int : z)

i zahteva da z bude simetri¢na razlika skupova x i y, odnosno da vazi z = (z \ y) U

(y \ ). Kodira se na slede¢i na¢in:

(Vie Ag\Ay)  (reiV ras) A(=re,; Vrsy)
(Vie Ay \ Az)  (ryi V=) A (=g Vr.)
(Vie AxNAy) re ((re; < ryy))

pri cemu se kodiranje gornje ekvivalencije svodi na kodiranje ogranic¢enja
bool _not_reif(ryi, Ty, T2i)-
Ogranicenje array set element
Ovo ogranic¢enje ima oblik:
array_set_element(var int : b, array [int] of set of int : as, var set of int : c)

i zahteva da vaZi as[b] = ¢, pri ¢emu je as niz skupovnih parametara. Ideja kodiranja

je sledeca:

\/ b=1iAc=asli]

i€AcNI(as)
pri ¢emu je I(as) skup indeksa niza as. Jednakost b = ¢ kodira se pomocu dve

jedini¢ne klauze:

Db,i

Pb,i—1

Jednakost ¢ = asli] kodira se na sledeé¢i nacin:

(Vi e Ac\ asli]) —res
(Vi e AcNasli]) res
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Kako bi formula bila u KNF obliku, koriste se pomoéne promenljive. Treba
naglasiti da, u slu¢aju kada je za neko ¢ skup as[i] \ A, neprazan, jednakost ¢ = as|i]

ne moze biti zadovoljena, pa ne treba dodavati klauze vezane za nju.

Ogranicenje array var set element
Ovo ogranicenje ima oblik:
array_var_set _element(varint : b, array [int] of var set of int : as, var set of int : c)

i zahteva da vazi as[b] = ¢, pri ¢emu je as niz skupovnih promenljivih. Kodira se
analogno ograni¢enju array _set _element, osim §to se jednakost ¢ = asli] ovog puta

svodi na kodiranje ogranicenja set eq(c, asi]).

Ogranicenje set card
Ovo ogranic¢enje ima oblik:
set _card(varsetofint : S,varint : x)

i zahteva da vazi x = |S|. Kako se skupovne promenljive kodiraju pomoc¢u ni-
za iskaznih promenljivih, za kodiranje ovog ograni¢enja moze posluziti ogranicenje
lin_bool _eq. Kako zahtevamo da fiksiran broj iskaznih promenljivih iz pomenutog
niza uzme vrednost tacno, kodiranje se moze vrsiti analogno kodiranju ogranic¢enja
lin_bool _eq kod koga su svi elementi niza as jednaki 1, a niz bs je pomenuti niz
iskaznih promenljivih. Posto je x celobrojna promenljiva, treba uzeti u obzir sve

njene moguce vrednosti:

\/ r=1i N |9 =i

i€D(x)

Jednakost z = i kodira se pomocu dve jedini¢ne klauze:

Pz
Pzxi—1
dok se jednakost |S| = ¢ kodira pomenutim postupkom svodenja na ogranicenje
lin_bool _eq.
Kako rezultujué¢a formula nije u KNF obliku, za svodenje na KNF koriste se

pomocne promenljive.
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Ogranicenje set le

Ovo ogranicenje ima oblik:
set le(var set of int : x, var set of int : y)

i zahteva da vazi x < y, pri ¢emu se koristi leksikografsko uredenje nad sortiranim

listama elemenata skupova. Koraci u kodiranju su slede¢i:

e Odreduju se [ i u koji redom predstavljaju minimum, odnosno maksimum
skupa A, U A,

e Kreira se niz xb iskaznih promenljivih sa indeksima od [ do wu, pri ¢emu je
element xb[i] tacan akko je vrednost ¢ ukljucena u skup z. Analogno se kreira

niz yb.

e Uvode se pomocne celobrojne promenljive &,in, Ymin 1 Tmazs Ymaz KOje redom
predstavljaju minimalne, odnosno maksimalne vrednosti iz skupova x i y. Ovo

se radi analogno kodiranju ograni¢enja array int_main i array _int_max.

e Kreira se niz b sa indeksima od [ do u. Njegove vrednosti definisu se na sledeci

nacin:

— Ako je xb[i] = yb[i], tada je b[i] < b[i + 1]. Na ovaj nacin se, iduéi sa leva
na desno (od manjih ka ve¢im elementima), dokle god se skupovi po tim
elementima ne razlikuju poredenje svodi rekurzivno na sledeéi element

bli + 1]. Kodiranju navedenog uslova odgovara sledeca formula:

(@ubfi] V Qybli]) A (5anli) V 2 G) V(@i A Glit1)) V(5 A Gbfi1))

koja se jednostavno moze svesti na KNF oblik koris¢enjem pomocnih

promenljivih.

— Ako je ybli] = 1, a xb[i] = 0, tada je bli] = 1 akko je X0, < i. Na ovaj
nacin se kodira sledeca ¢injenica - x je leksikografski manje ili jednako y
ako je i-ti element prvi na kome se skupovi razlikuju, a svi elementi skupa
2 su manji od 7; u suprotnom x nece biti manje ili jednako y. Kodiranju

navedenog uslova odgovara sledeca formula:
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(qb[l] v _\pymamyi) /\ (_‘qb[l] v pymazyi)
koja se jednostavno moze svesti na KNF oblik.

— Sli¢no prethodnom uslovu, ako je yb[i] = 0, a xb[i]] = 1, tada je b[i] =1

akko je Ymar > 1. Kodiranju navedenog uslova odgovara sledec¢a formula:

(@]} V Prmasi—1) A (D@0 V TPapari-1)
koja se jednostavno moze svesti na KNF oblik.

— Specijalno, ako je ¢ = u, tada se kodira uslov b[u] < (zblu] = yblu)),

analogno ogranicenju bool _le_reif(xblu], yblu], blu]).

e Nakon §to je niz b definisan na navedeni nac¢in, promenljiva b[l] sadrzi infor-
maciju da li vazi x < y. Kako bi se obezbedilo da taj uslov bude ispunjen,
dodaje se jedinicna klauza gy;.

Ogranicenje set le reif

Ovo ogranicenje ima oblik:

set_le reif(var set of int : x, var set of int : y)

i predstavlja ekvivalencijski oblik ograni¢enja set le. Kodira se analogno navedenmo
ograniCenju, osim $to se na kraju umesto jedini¢ne klauze gy kodira ogranicenje
bool _eq(bll],r).

Ogranicenje set 1t

Ovo ogranic¢enje ima oblik:
set lt(var set of int : x, var set of int : y)

i zahteva da vazi x < y, pri ¢emu se koristi leksikografsko uredenje nad sortiranim
listama elemenata skupova. Kodira se analogno ograni¢enju set le, osim $to se u

specijalnom slucaju kada je i = u koristi ogranicenje bool It reif(xblu], yblu], blu]).
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Ogranicenje set 1t reif
Ovo ogranicenje ima oblik:
set It reif(var set of int : x, var set of int : y)

i predstavlja ekvivalencijski oblik ograni¢enja set [t. Kodira se analogno navedenom
ogranicenju, osim Sto se na kraju umesto jedinicne klauze gy kodira ogranicenje
bool _eq(bll], ).

Ekvivalencijski oblici ogranicenja

Ogranicenja: set _eq_reif, set _in_reif, set ne reif, set subset reif,
set superset reif, kao i njihove verzije sa implikacijom, kodiraju se ranije opisanim

postupkom kodiranja ekvivalencijskih, odnosno implikacijskih oblika ogranicenja.
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GLAVA 3. SVOPENJE FLATZINC OGRANICENJA NA PROBLEM SAT

3.6 Primer kodiranja FlatZinc modela

Kako bi se ilustrovao proces kodiranja konkretnog FlatZinc modela, u ovom

odeljku je predstavljen primer kodiranja slede¢eg modela:

var 1..3: x;
var 1..3: y;

var 1..3: z;

var bool: a;
var bool: b;

var bool: c;

var set of 1..3: s;
var set of 1..3: t;

var set of 1..3: u;

constraint int_ne(x, y);
constraint int_plus(y, z, 4);
constraint int_lin_le([2, 31, [x, zl, 7);

constraint bool_or(a, b, true);
constraint array_bool_xor ([a, b, cl);

constraint bool_le(b, c);
constraint set_in(x, s);
constraint set_subset_reif(u, t, a);

constraint set_intersect(s, u, t);

solve satisfy;

Za pocetak, treba kodirati domene promenljivih. Eksplicitno je potrebno dodati

klauze jedino za celobrojne promenljive:

VZ € {17'-'73}7 ﬁpv,i—l\/pv,i
TPv,0

pv,S

za svako v € {x,y, z}. Dalje, potrebno je kodirati jedno po jedno ogranicenje.

Ogranicenje int _ne(x,y) kodira se po slede¢em principu:
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/\ (_'hl \% Pz,a \ _'py,—b—l) (310)
a+b=-2
/\ (mhe V =Pg—a—1 V Dyp) (3.11)
a+b=-2
ha V. (3.12)
pri ¢emu u formuli (3.10) vazia € {0,...,3},b € {—4,...,—1}, dok u formuli (3.11)
vazia € {—4,...,—1},b€ {0,...,3}.

Ogranicenje int_plus(y, z,4) kao treé¢i argument ima konstantu 4. Kako je na
tom mestu ocekivana celobrojna promenljiva, potrebno je kodirati celobrojnu po-

moénu promenljivu ¢ sa fiksiranim domenom jednakim {4}:

Pe,3

pc,4

Nakon toga, za kodiranje samog ogranic¢enja koriste se slede¢e formule:

N (Peic1 Vo,V pai) (3.13)
it+jtk=—2
/\ (pc,i V Py, —ji—1 V _'pz,—b—l) (314)
itjtk=—2
pri ¢emu u formuli (3.13) vazi i € {—5,—4},5 € {0,...,3},k € {0,...,3}, dok u
formuli (3.14) vazi i € {3,4},j € {—4,..., -1}, ke {—4,...,—1}.

Za kodiranje ogranicenja int_lin_le([2, 3], [z, 2], 7) najpre je neophodno uvesti
pomocénu promenljivu s ¢ija je svrha kodiranje supstitucije s = 2 - x + 3 - 2. Granice
domena promenljive s su l(s) =2-l(x)+3-1(2) =51iu(s) =2 -u(r)+3-u(z) = 15.

Kodiranje supstitucije ide sli¢cno kao u prethodnom ogranicenju:

/\ (_'ps,—i—l V Pz,j Vv pz,k) (315)
i+j+k=—2
/\ (Psi V 7Dz,—j—1V 7Pz 1) (3.16)
it+j+hk=—2
pri ¢emu u formuli (3.15) vazi i € {—16,...,—5},57 € {0,...,3},k € {0,...,3}, dok
u formuli (3.16) vazii € {4,...,15},7 € {—4,..., -1}, ke {—4,...,—1}.
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Kako bi se ogranic¢enje kodiralo, ostaje jos da se doda sledec¢a jedini¢na klauza:

Ps,7

Kodiranje ogranicenje bool _or(a, b, true) zahteva najpre uvodenje pomocne pro-
menljive aorb kojom ¢e biti predstavljena konstanta true. Ovo se postize dodavanjem

jedini¢ne klauze g,o. Nakon toga, ogranicenje se kodira slede¢om formulom:

(_'Qa V anrb) A (_'Qb V anrb) A (Qa \ qb Vv _'anrb>

Ogranicenje array bool zor([a,b,c]) zahteva najpre uvodenje pomoéne pro-
menljive axb radi kodiranja supstitucije axb = a @& b. Pomenuta supstitucija se

kodira slede¢om formulom:

(QQ V ﬁqa:cb> A (Qb V _‘Q(sz) A (ﬁQQ V ) \ Q(sz)

Sada je dovoljno obezbediti da promenljive axb i ¢ imaju razli¢ite vrednosti:

(thb V QC) A (_'Qa:cb Vv _'QC)

Ogranicenje int_le(b, ¢) kodira se jednostavno slede¢om klauzom:

) \ qc

Ogranicenje set in(z, s) kodira se slede¢im formulama:

3

N Paict V=) A (=paim1 V =hi) A (r; V —hy)
=1

hiV hy V hs

Ogranicenje set subset reif(u,t,a) kodira se slede¢im formulama:

qq V _‘Hl
3
/\(ru,i\/_'hi) A (_'rt,i V ﬁhz)

i=1
hiVhy V hs vV —~H;
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qa \ _‘HQ
3
/\ Ty VT Vo Ho
i=1

H, Vv H,

Ogranicenje set _intersect(s, u,t) kodira se slede¢om formulom:

3
/\(7"5 Vo) A (1 Vo) A (2 Voo, Vo)
i=1

Sveukupno, formula dobijena kodiranjem celog modela ima 51 promenljivu i 203

klauze.
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Implementacija

U ovom poglavlju predstavljena je implementacija alata FlatToSAT! pisanog u
jeziku C++ ¢iji razvoj je centralna tema rada. Ukratko je izloZzen proces parsiranja
FlatZinc modela, a zatim je dat opis najbitnijih delova klase Encoder koja je klju¢na

za funkcionisanje alata, kao i opis toka izvrSavanja programa.

Parser

Parser jezika FlatZinc generisan je pomocu alata Flex i Bison [6]. Koris¢ena
je gramatika data u okviru formalne specifikacije jezika FlatZinc [14]. Za svaki od
osnovnih koncepata jezika (parametri, promenljive, ograni¢enja, cilj modela) dekla-
risana je po jedna struktura koja ¢uva njegove kljuéne podatke. Takode, pomocu
C++ sablona variant, deklarisan je tip unije pomenutih struktura pod nazivom
Item. Polja struktura su popunjavana koris¢enjem akcija nad odgovarajué¢im pra-
vilima gramatike, a zatim su same strukture dodavane u niz ¢iji su elementi tipa
Item, pod nazivom parsing_result. Kompletan model je po zavrSetku sacuvan u

pomenutom nizu koji je dalje prosleden klasi Encoder.

Klasa Encoder

Glavni deo implementacije alata sadrzan je u okviru klase Encoder. Javni deo

klase ¢ine sledeéi metodi:

e konstruktor klase - prima pomenuti niz parsing_result, kao i nisku koja

oznacCava putanju na kojoj treba napraviti datoteku formula.cnf u koju ée

https://github.com/Lojovic/FlatZincToSATConverter
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biti upisana KNF formula

e encode_to_cnf - prevodi FlatZinc model u KNF formulu koriSéenjem pomoé-

nih metoda opisanih u nastavku
e write_to_file - ispisuje KNF formulu u DIMACS formatu u datoteku formula.cnf

e run_minisat - pokreée SAT reSava¢ minisat nad formulom sa¢uvanom u da-

toteci formula.cnf; izlaz je sacuvan u datoteci model.out

e read_minisat_output - Cita izlaz SAT reSavaca iz datoteke model.out, a
zatim ispisuje poruku o zadovoljivosti (UNSAT, SAT). U slucaju zadovoljive
formule, izlaz SAT resavaca se dekodira i ispisuju se vrednosti dodeljene pro-

menljivama
U privatnom delu klase najznacajnija su sledeca polja:

e cnf_clauses - niz ¢iji su elementi nizovi literala. Svaki element predstavlja
klauzu, a celokupni niz predstavlja KNF formulu. Literali su predstavljeni
strukturom koja ¢uva tip (enum sa elementima ORDER, BOOL_VARIABLE, HELPER,
DIRECT, SET_ELEM), identifikator (ceo broj; vezuje literal za promenljivu iz
originalnog problema), pol (tipa bool; false ukoliko je literal negiran, a u
suprotnom true) i vrednost za koju je literal vezan (ceo broj; znacajno kod
literala tipa ORDER, DIRECT i SET_ELEM)

e id_map - mapa koja odreduje promenljivu iz originalnog problema na osnovu
identifikatora. Promenljive koje se ne nalaze u ovoj mapi ne obraduju se pri-
likom dekodiranja resenja SAT resavaca (pomocne promenljive ili one za koje

je ve¢ dedukovana vrednost)

e parameter_map, variable_map, array_map - odreduju o kojem se parame-
tru/promenljivoj/nizu radi na osnovu imena. Koriste se prilikom dohvatanja

argumenata ograni¢enja u metodu encode_constraint

e literal_to_num, num_to_literal - odreduju preslikavanje izmedu skupa li-
terala i skupa DIMACS brojeva. Koriste se u metodu write_clauses_to_file,

kao i prilikom dekodiranja izlaza SAT resavaca

Najznacajniji privatni metodi su:
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e write_clauses_to_file -ispisuje KNF formulu sa¢uvanu u polju cnf _clauses

u pomoé¢nu datoteku helper2.cnf, pritom nadovezujuci se na njen sadrzaj,
a zatim prazni niz cnf_clauses. Za razliku od metoda write_to_file koji
ispisuje KNF formulu koja predstvalja kompletan FlatZinc model, ovaj metod
se poziva nakon svakog kodiranja ogranic¢enja radi ustede RAM-a. Takode,
vodi evidenciju o broju klauza i literala, sto metod write_to_file kasnije
koristi kako bi popunio datoteku helperl.cnf DIMACS zaglavljem formu-
le (datoteka formula.cnf se dobija nadovezivanjem datoteka helperl.cnf i
helper2.cnf)

e encode_variable - kodira domen promenljive koja se prosleduje metodu, na
nacin opisan u prethodnom poglavlju. Popunjava mape id_map, variable_map

1 array_map
e encode_parameter - popunjava mapu parameter_map

e encode_constraint - prosleduje mu se ogranicenje Cije argumente dohvata
pomocu gorepomenutih mapa, a zatim poziva odgovarajucu funkciju za kodi-

ranje

e metodi oblika encode_ime_ogranicenja - kodiraju ogranicenje sa odgovara-

juéim imenom na nac¢in opisan u prethodnom poglavlju

Tok izvrSavanja

Tok izvrSsavanja programa tipi¢no izgleda ovako:

e Program se pokrec¢e naredbom ./flatzinc_to_sat [path/to/input.fzn],
pri ¢emu ukoliko se putanja do FlatZinc modela ne navede ocekuje se da ¢e

model biti unet preko standardnog ulaza

e Funkcija main poziva funkciju yyparse koja parsira FlatZinc model i popu-

njava niz parsing_result

e Kreira se instanca klase Encoder kojoj se prosleduje parsing_result, a zatim

se poziva metod encode_to_cnf

e Metod encode_to_cnf prolazi kroz niz parsing_result, proverava tip tre-
nutnog elementa (parametar, promenljiva, ograni¢enje) i poziva odgovarajuci

metod (encode_parameter, encode_variable, encode_constraint)
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e Nakon izvrSavanja metoda encode_to_cnf, pozivaju se redom metodi write_to_file,
run_minisat i read_minisat_output. Rezultat je ispis informacija o zadovo-
ljivosti problema i eventualnoj zadovoljavajuc¢oj dodeli vrednosti promenljiva-

ma na standardni izlaz.
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Glava 5
Evaluacija

Evaluacija performansi alata vrSena je na racunaru sa 16GB RAM-a, Intel Co-
re 15-8350U procesorom sa 4 jezgra (8 niti) i frekvencijom 1.70GHz. Za evaluaci-
ju su koriséeni problemi iz korpusa minizinc-benchmarks', kao i pojedini problemi
obradeni u okviru specijalnog kursa Simbolicko izracunavanje?® odrzanog na Mate-
matickom fakultetu tokom Skolske 2022/23 godine. Parametri su birani kao uzorak
skupa ponudenih parametara u slucaju korpusa minizinc-benchmarks, odnosno pro-
cenom autora u slucaju problema sa kursa Simbolicko izracunavanje. Kako su neki
od problema inicijalno bili optimizacione prirode, najpre je bilo potrebno resiti ih
pomocu nekog od resavaca koji podrzavaju probleme te vrste, a zatim dodati opti-
mizovani izraz sa dobijenom vrednoséu kao parametar novog modela koji ¢e za cilj
imati zadovoljenje. Poredenje je vrieno sa resavacem chuffed zasnovanom na lenjom
generisanju klauza, a rezultati su prezentovani u tabelama 5.1 —5.17 datim u nastav-
ku. Simbol / oznacava da je reSavacu ponestalo memorije, dok simbol + oznacava
da je izvrSsavanje prekinuto nakon naznacenog vremenskog perioda (najseSée posle

proizvoljno izabranih 3 sata i 30 minuta ozna¢enih sa 3h30m+).

'https://github.com/MiniZinc/minizinc-benchmarks
Zhttps://github.com/milanbankovic/symbolic_computing/tree/main/programiranje_
ogranicenja/primeri
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Tabela 5.1: queens

n | FlatToSAT | Chuffed
4 0mo0.021s 0mO0.079s
8 0mO0.106s 0mo0.073s
20 Om4.041s 0m0.332s
50 4m37.031s 3h30m-+

100 7 3h30m +
200 / 3h30m +
400 / 3h30m +

Tabela 5.2: knights

n, m | FlatToSAT | Chuffed
8,4 | 22m19.342s | Om0.080s
8,10 | 38mb51.031s | Om0.144s
8,12 | 40m9.736s | 0m0.120s
8,14 | 45mb5.703s | 0m0.139s

Tabela 5.3: latin-squares

n | FlatToSAT | Chuffed
0.057s 0m0.087s
0.661s 0m0.103s
10 3.589s 0m0.109s
12 9.173s 0m0.145s
15 31.587s 0m0.256s
20 | 2m44.736s | 0mO0.637s
25 | 10m36.418s | 0m2.85s

w

EN{

Tabela 5.4: schur _numbers

n, ¢ | FlatToSAT | Chuffed

5,3 0m0.077s 0m0.071s

7,3 0m0.083s 0m0.087s
3

—_

0, 0mO0.129s 0mO0.088s
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Tabela 5.5: kakuro

Type

FlatToSAT

Chuffed

6x6, easy

0OmO0.210s

0m0.075s

6x6, hard

0m0.228s

0m0.093s

6x6, super

0mO0.236s

0m0.087s

8x8, easy

OmO0.263s

0m0.093s

8x8, hard

0m0.390s

0m0.078s

8x8, super

0m0.489s

0m0.080s

Tabela 5.6: golomb

=

FlatToSAT

Chuffed

=z

0mO0.100s

0m0.085s

~

0mO0.132s

0m0.089s

—_
=~

0m2.998s

0m0.095s

[N}
o

0m20.071s

O0m0.076s

1m51.700s

Om0.577s

Ol oo| 1| | F| |

=~
=~

8m49.740s

0m3.378s

Tabela 5.7: knapsack

n, C, value | FlatToSAT | Chuffed
6, 10, 35 0m0.046s | Om0.062s
5, 20, 18 Om0.157s | Om0.075s
3, 50, 220 Om0.375s | Om0.089s
8, 15, 165 0m0.436s | 0m0.073s
15, 35, 235 Om2.546s | Om0.107s
20, 50, 101 0m3.497s | Om0.073s

Tabela 5.8: allinterval

Instanca | FlatToSAT | Chuffed
easyl Om0.674s 0m0.088s
easy2 0m1.695s 0m0.168s

medium1 0m?2.486s 0m0.450s

medium?2 0Om4.730s Om1.655s
hardl 0m7.980s Om11.635s
hard?2 Om13.568s 0m4.294s
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Tabela 5.9: langford

n | FlatToSAT | Chuffed
3 OmO0.158s | 0mO0.082s
4 0m0.387s 0m0.078s
5 0m0.916s | 0Om0.084s
7 0m3.516s Om0.111s
8 Om6.149s | OmO0.116s
11 | 0m24.189s | OmO0.187s
Tabela 5.10: golfers
m, n | FlatToSAT | Chuffed
2,2 0m0.946s 0Om0.105s
2,3 1m2.802s 0m0.107s
4,3 / Om17.674s
Tabela 5.11: fillomino
Dimenzije | FlatToSAT | Chuffed
3x3 0m0.844s | 0mO0.085s
4x4 0mb5.494s | OmO0.116s
4x4 O0m7.638s | 0m0.353s
5XH Om17.064s | Om0.124s
9XH 0m19.525s | 0m0.132s
9XH 0m19.070s | O0m0.183s
Tabela 5.12: nonogram
Instanca FlatToSAT | Chuffed
non fast 1 | 12m25.945s | Om4.152s
non fast 2 | 10m44.750s | Om4.875s
non_med 1 9m11.369s 0m12.857s
non_med 2 | 25ml8.027s 1m2.659s
non awful 1| 13m15.544s | 46m49.961s
non_awful 2 | 9mbH6.723s Om16.344s
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Tabela 5.13: nurse scheduling problem (nsp)

Instanca | FlatToSAT | Chuffed
14 1 Om2.187s 0m6.217s
14 2 0m1.938s 3h26m22s
14 3 Om1.631s 3h30m-+
28 1 Om3.300s 2m7.000s
28 2 0m3.253s 57m38.000s
28 3 0m3.463s 2h29m3s

Tabela 5.14: grid-coloring

n, m | FlatToSAT | Chuffed
4,8 0m0.543s 0m0.616s
5,6 0m0.456s 0m0.124s
7,8 Om1.318s 0mb.821s
10, 10 | 0m24.432s 10h+
12, 13 10h+ 10h-+

Tabela 5.15: steiner-triples

n | FlatToSAT | Chuffed
3 0m0.014s 0m0.092s
7 0m0.632s 0m0.140s
9 0m2.091s 0Om0.515s
13 | 0O0ml15.246s | 8m20.000s
15 | 1m25.902s 3h30m-+
19 | 22m7.875s 3h30m-+

Tabela 5.16: equation solving (EQ)

Instanca

FlatToSAT

Chuffed

eq20

/

0m0.095s

Tabela 5.17: slow__convergence

n

FlatToSAT

Chuffed

100

/

0m0.562s

Moze se primetiti da je alat uspeo da resi veéinu problema na kojima je vrSena

evaluacija. Takode, kod veéine problema, moze se opaziti prirodan trend porasta
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vremena izvrSavanja sa povecanjem vrednosti parametara. Za nekoliko problema
kod kojih to nije slucaj, parametri su kalibrisani tako da se tezina instance odreduje
prema standardnim CSP reSavac¢ima, Sto ne oslikava tezinu reSavanja za pristup
koji koristi alat FlatToSAT. Kod nekoliko problema (queens, nsp, grid-coloring,
steiner-triples), alat je uspeo da resi instance koje chuffed nije uspeo da resi u
posmatranom vremenskom periodu. Postoji nekoliko problema kod kojih je alat
imao problem sa memorijom, $to se moze pripisati velicini KNF formule koja se
prosleduje SAT resavacu. Takvi problemi su najcesée imali promenljive sa velikim
domenima (veli¢ina > 1000) ili su prilikom kodiranja linearnih ograni¢enja nastajale
pomocne promenljive sa velikim domenima. Treba naglasiti da su dobijena resenja
proverena, pri ¢emu nisu uocene greske, Sto povecava sigurnost u ispravnost alata

(iako ona nije formalno dokazana, pa je moguce da greske postoje).
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Glava 6

Zakljucak

U ovom radu dat je detaljan opis postupka svodenja FlatZinc modela na KNF
formulu. Najpre su uvedeni odredeni pomoé¢ni koncepti (poput kodiranja primitiv-
nih zbirova i razlika, kao i koris¢enja pomoc¢nih promenljivih), a zatim je opisan
pristup kodiranju domena promenljivih razli¢itih tipova, kao i pojedinacnih Flat-
Zinc ogranicenja. Predstavljena je implementacija alata napisanog u jeziku C+-+
koji koris¢enjem pomenutog pristupa prevodi FlatZinc model u KNF formulu u
DIMACS formatu, dok za resavanje dobijene formule koristi minisat SAT reSavac.
Evaluacija alata vrSena je poredenjem vremena izvrsavanja sa chuffed CSP resa-
va¢em na 17 problema. Pokazalo se da alat uspeva da nade reSenja cak i za teske
instance veé¢ine problema, ali kod odredenog broja problema nailazi na prepreku u
vidu memorijskih ogranicenja.

Uprkos dobrim rezultatima evaluacije, alat je razvijen sa primarnim ciljem funk-
cionalnosti, a ne efikasnosti. Samim tim, jedan moguci pravac unapredenja uklju-
¢ivao bi optimizaciju postojece implementacije, koriséenje drugih nacina kodiranja
pojedina¢nih ogranicenja, kao i drugih Sema kodiranja domena promenljivih. Drugi
mogudi smer istrazivanja mogao bi da podrazumeva formalizaciju postupka kodira-
nja pojedina¢nih ogranicenja, kako bi se stekla sigurnost u ispravnost alata. Najzad,
u eri munjevitog napretka razlic¢itih tehnika masinskog ucenja, namece se mogué-
nost integracije pomenutih tehnika sa alatom, u cilju odabira optimalnog nacina

kodiranja odredenog problema.
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