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Naslov master rada: Svođenje problema zadovoljenja ograničenja zadatih na je-
ziku FlatZinc na problem SAT

Rezime: U ovom radu je predstavljen alat za svođenje problema zadovoljenja ogra-
ničenja na problem SAT. Pored neophodnih teorijskih osnova, dat je i opis ulaznog
jezika alata pod nazivom FlatZinc. Procedura kodiranja FlatZinc promenljivih, kao
i pojedinačnih FlatZinc ograničenja celobrojnog, logičkog i skupovnog tipa detaljno
je opisana i analizirana. Ključni detalji implementacije, kao i detaljna evaluacija
alata izloženi su u poslednje dve glave ovog rada.
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Glava 1

Uvod

Pojam problema zadovoljenja ograničenja (engl. Constraint satisfaction problem
(problem CSP)) pojavio se sedamdesetih godina prošlog veka [7]. Vrlo brzo je do-
bio na popularnosti zbog mogućnosti predstavljanja brojnih praktičnih problema u
obliku problema CSP. Lista domena u kojima se problem CSP pojavljuje uključuje
obradu prirodnih jezika [4], planiranje i alokaciju resursa [2], automatsko dokazivanje
teorema [5] i mnoge druge.

U svojoj osnovnoj formi, problem CSP podrazumeva dodelu vrednosti svakoj
od promenljivih koje učestvuju u problemu. Svaka od promenljivih uzima vrednost
iz svog fiksiranog domena, dok ograničenja koja figurišu u problemu određuju koje
vrednosti promenljivih ne mogu ići zajedno. U slučaju da postoji dodela vrednosti
promenljivama takva da poštuje sva ograničenja, kažemo da problem ima rešenje.
U suprotnom, problem nema rešenja.

Razvijeni su brojni alati u cilju rešavanja problema CSP pod nazivom CSP reša-
vači. Oni su najčešće zasnovani ne nekoj vrsti pretrage sa vraćanjem (engl. backtrac-
king search) ili lokalne pretrage. Takođe, obično se koriste tehnike pojednostavljenja
problema pre primene pretrage, kolektivno poznate kao propagacija ograničenja.

Sa razvojem CSP rešavača pojavila se potreba za standardizovanim jezicima
za modelovanje problema CSP. Jedan od trenutno najpopularnijih takvih jezika
nosi naziv MiniZinc [15]. Kako je MiniZinc vrlo izražajan jezik, modeli zapisani u
njemu mogu biti izuzetno kompleksni. Iz tog razloga, pre nego što bude predat CSP
rešavaču, ulaz na jeziku MiniZinc se najčešće prevodi u njegovu pojednostavljenu
formu, poznatu kao FlatZinc [14].

Problem ispitivanja zadovoljivosti iskazne formule (engl. Boolean satisfiability
problem (problem SAT )) jedan je od centralnih problema teorijskog računarstva još
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GLAVA 1. UVOD

od sedamdesetih godina prošlog veka [1]. Tada je dokazano da je problem SAT NP-
kompletan, postavši tako prvi problem za koji je formalno dokazana pripadnost ovoj
klasi složenosti. U međuvremenu, razvijen je veliki broj izuzetno efikasnih alata za
rešavanje ovog problema pod nazivom SAT rešavači. Oni najčešće na ulazu očekuju
formulu u konjunktivnoj normalnoj formi (KNF ).

Jedan od mogućih načina rešavanja problema CSP uključuje njegovo svođenje
na problem SAT [9]. Dva glavna pristupa tome su vredno (engl. eager) i lenjo gene-
risanje klauza (engl. lazy clause generation [11]). Ključna razlika između pristupa se
ogleda u tome što se kod vrednog generisanja klauza čitav model unapred prevodi
u KNF i zatim predaje postojećem SAT rešavaču na rešavanje, dok se kod lenjog
pristupa SAT rešavač koristi interno u okviru CSP rešavača za pretragu koja se
usmerava dinamičkim generisanjem klauza koje kodiraju ograničenja u toku pretra-
ge. Postoje alati zasnovani, kako na prvom (Sugar [17]), tako i na drugom pristupu
(Chuffed [13], geas [16]). Dok alati zasnovani na lenjom generisanju klauza uglav-
nom podržavaju FlatZinc kao ulazni jezik, alati zasnovani na vrednom pristupu po
pravilu koriste svoje specifične ulazne jezike. Koliko je autoru ovog rada poznato, ne
postoji alat koji problem CSP predstavljen na jeziku FlatZinc konvertuje u KNF.

Cilj ovog rada biće implementacija i predstavljanje jednog takvog alata, zasno-
vanog na vrednom pristupu generisanja klauza. Alat će vršiti kodiranje FlatZinc
promenljivih, kao i ograničenja celobrojnog, logičkog i skupovnog tipa u DIMACS
format [3] koji podržava većina modernih SAT rešavača. Pored toga, biće omogućeno
dekodiranje izlaza SAT rešavača u slučaju zadovoljivih problema.

Ostatak rada je organizovan na sledeći način. U glavi 2 biće predstavljene neop-
hodne teorijske osnove, zajedno sa ilustrativnim primerima. U glavi 3 biće opisan
i analiziran način kodiranja FlatZinc promenljivih i pojedinačnih ograničenja. U
glavi 4 biće dat osvrt na ključne implementacione detalje alata. U glavi 5 biće pred-
stavljena detaljna evaluacija performansi alata. Glava 6, kao zaključak, predočiće
postignute rezultate ovog rada, kao i predloge za potencijalni dalji rad.
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Glava 2

Osnove

2.1 Problem zadovoljenja ograničenja

Problem zadovoljenja ograničenja (problem CSP) P je uređena trojka P = (X,
D, C) , pri čemu važi:

• X = (x1, . . . , xn) je niz promenljivih

• D = (D1, . . . , Dn) je niz odgovarajućih domena promenljivih, pri čemu je Di

domen promenljive xi (skraćeno D(xi) = Di)

• C = (C1, . . . , Cm) je niz ograničenja, pri čemu je svako ograničenje Ci podskup
Di1 × · · · ×Dik , za neki rastući niz indeksa i1, . . . , ik. Kažemo da promenljive
xi1 , . . . , xik figurišu u ograničenju Ci (skraćeno X(Ci) = (xi1 , . . . , xik)), a broj
k nazivamo arnost ograničenja.

Rešenje problema CSP P je uređena n-torka (d1, . . . , dn) ⊆ D1 × · · · × Dn, ta-
kva da za svako ograničenje Ci nad promenljivama (xi1 , . . . , xik), k-torka di1 , . . . , dik
pripada Ci. Najčešće se rešenje problema CSP (d1, . . . , dn) zapisuje kao dodela vred-
nosti promenljivama {x1 = d1, . . . , xn = dn}. Takođe, najčešće se pod rešavanjem
problema CSP podrazumeva pronalaženje bilo kog rešenja, a ređe, pronalaženje svih
mogućih rešenja.

Domen CSP promenljive može biti konačan, prebrojivo beskonačan ili nepre-
brojivo beskonačan. U ovom radu, pažnja će biti posvećena problemima CSP sa
konačnim domenima promenljivih.

Primer 1. Primer problema koji može biti modelovan kao problem CSP sa konačnim
domenima promenljivih je problem osam dama. Cilj ovog problema je postaviti osam
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GLAVA 2. OSNOVE

dama na šahovsku tablu tako da se međusobno ne napadaju. Jedno moguće rešenje,
kao i primer modelovanja problema osam dama u obliku problema CSP dati su u
nastavku:

Slika 2.1: Jedno moguće rešenje problema osam dama.1

• Promenljive: xi za i ∈ {1, . . . , 8}, gde svako xi predstavlja redni broj vrste u
kojoj će biti postavljena dama iz i-te kolone.

• Domeni: Di = {1, . . . , 8} za svaku promenljivu xi.

• Ograničenja:

1. Ograničenja vrsta: Svaka vrsta mora sadržati tačno jednu damu:

∀i, j ∈ {1, . . . , 8} i < j =⇒ xi ̸= xj

2. Ograničenja dijagonala: Dve dame ne smeju biti postavljene na istoj
dijagonali:

∀i, j ∈ {1, . . . , 8} i < j =⇒ |xi − xj| ≠ |i− j|

Jedno rešenje ovog problema je {x1 = 5, x2 = 3, x3 = 1, x4 = 7, x5 = 2, x6 =

8, x7 = 6, x8 = 4} (slika 2.1).
1Slika preuzeta sa https://en.wikipedia.org/wiki/Eight_queens_puzzle
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GLAVA 2. OSNOVE

2.2 MiniZinc i FlatZinc

MiniZinc je jezik visokog nivoa za modelovanje problema CSP [10]. Sadrži veliku
biblioteku predefinisanih ograničenja koja mu omogućava izuzetnu ekspresivnost pri
modelovanju. Takođe, MiniZinc podržava različite mehanizme koji olakšavaju proces
modelovanja, poput struktura podataka visokog nivoa (nizovi, skupovi, enumerisani
tipovi), korisnički definisanih funkcija i predikata, kao i razgraničenja podataka i
modela.

Primer gorepomenutog problema osam dama modelovanog pomoću jezika Mini-
Zinc dat je u nastavku:

1

2 par int : n = 8;
3

4 array [1..n] of var 1..n: queens;
5

6 constraint
7 forall(i in 1..n) (
8 forall(j in i+1..n) (
9 queens[i] != queens[j] /\

10 abs(queens[i] - queens[j]) != abs(i - j)
11 )
12 );
13

14 solve satisfy;
15

16 output [ show(queens) ];

U navedenom modelu, po ključnoj reči par može se prepoznati da n predstavlja
MiniZinc parametar - simboličku konstantu čija je vrednost poznata u fazi prevođe-
nja u FlatZinc, a čija se vrednost može zadati i u zasebnoj datoteci. Ključna reč var

koristi se pri deklaraciji MiniZinc promenljive čiji se domen zadaje, a od rešavača
se očekuje da joj dodeli vrednost. Ključna reč array govori da je u pitanju dekla-
racija niza, a konstrukti [1..n] i 1..n određuju redom njegovu dimenziju (niz ima n

elemenata), odnosno domen svakog od elemenata (skup celih brojeva {1, . . . , n}).
U kombinaciji, ključne reči array i var govore da je u pitanju deklaracija nizovske
promenljive - niza čiji su elementi promenljive. Nakon ključne reči constraint navodi
se ograničenje, a nakon ključne reči solve cilj modela (zadovoljenje ili optimizacija).

FlatZinc je podskup jezika MiniZinc čija je primarna uloga da služi kao ulaz
za CSP rešavače. Njegova sintaksa je znatno jednostavnija (u smislu ograničenja
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GLAVA 2. OSNOVE

koja se mogu zadati) od sintakse jezika MiniZinc, ali za razliku od MiniZinc mode-
la, FlatZinc modeli često umeju da budu glomazni i nečitljivi za čoveka. U okviru
standardne MiniZinc distribucije2 postoji alat koji automatski prevodi ulaz zadat
na jeziku MiniZinc u FlatZinc reprezentaciju koja se dalje može proslediti odgova-
rajućem rešavaču.

Kao i MiniZinc modeli, FlatZinc modeli se sastoje iz:

• nula ili više spoljašnjih deklaracija predikata (nestandardni predikati podržani
od strane konkretnih rešavača)

• nula ili više deklaracija parametara

• nula ili više deklaracija promenljivih

• nula ili više ograničenja

• jednog cilja modela (zadovoljenje, maksimizacija, minimizacija)

Ključna razlika u odnosu na MiniZinc modele je u tome što su ograničenja koja
se mogu zadavati u FlatZinc modelu znatno jednostavnija. FlatZinc ograničenja mo-
gu se svrstati u jedan od četiri tipa: celobrojna, logička, skupovna ili realna. Slično,
promenljive u jeziku FlatZinc mogu biti celobrojnog, logičkog, skupovnog, realnog,
ali i nizovskog tipa, tj. mogu predstavljati niz vrednosti nekog od osnovnih tipo-
va. Parametri su fiksirane vrednosti koje figurišu u modelu i mogu biti istih tipova
kao i promenljive. Cilj ovog rada je prevođenje FlatZinc modela koji predstavljaju
probleme CSP, pa će se podrazumevati da je cilj modela njegovo zadovoljenje, a ne
optimizacija određenog izraza. Takođe, biće obrađena standardna FlatZinc ograni-
čenja, pa će odsustvo spoljašnjih predikata biti podrazumevano.

Prevođenje MiniZinc modela u FlatZinc model naziva se poravnanje (engl. flat-
tening). Poravnanjem se najčešće uvode pomoćne promenljive koje nisu postojale
u osnovnom MiniZinc modelu, a složena MiniZinc ograničenja se raščlanjavaju na
jednostavnija FlatZinc ograničenja.

Poravnanjem MiniZinc modela osam dama uvodi se osam novih promenljivih
koje predstavljaju elemente niza queens. Ograničenja vrsta svode se na ograniče-
nja oblika int_lin_ne([−1, 1], [xi, xj], 0) čime se obezbeđuje da linearna jednakost
−xi + xj = 0 ne bude tačna. Za ograničenja dijagonala najpre se uvode pomoćne

2https://www.minizinc.org
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GLAVA 2. OSNOVE

promenljive xpom koje će čuvati razlike oblika xi − xj. Njihove vrednosti se posta-
vljaju korišćenjem ograničenja oblika int_lin_eq([1,−1,−1], [xi, xj, xpom], 0), čime
se obezbeđuje da linearna jednačina xi−xj−xpom = 0 bude ispunjena. Dalje, uvode
se pomoćne promenljive xbez_k čiji su domeni oblika {0, . . . , 7} \ k, k ∈ {0, . . . , 7}.
One efektivno pamte za par promenljivih xi, xj razliku njihovih indeksa i − j kao
broj k koji im nedostaje u domenu. Ograničenja oblika int_abs(xpom, xbez_k) se sta-
raju da razlika xi − xj sačuvana u promenljivoj xpom ne bude jednaka k, tj. i − j,
a samim tim i obezbeđuju ograničenja dijagonala. Više reči o pomenutim FlatZinc
ograničenjima dato je u glavi 3.

2.3 Problem SAT

Neka je dat najviše prebrojiv skup iskaznih promenljivih (atoma) P i skup lo-
gičkih veznika {⊥,⊤,¬,∧,∨,⇒,⇔}. Skup iskaznih formula FP nad P formira se na
sledeći način:

• atomi i logičke konstante (⊥,⊤) su iskazne formule

• ako je A iskazna formula, onda je i ¬A iskazna formula

• ako su A i B iskazne formule, onda su i A∧B, A∨B, A ⇒ B, A ⇔ B iskazne
formule

• ako je A iskazna formula, onda je i (A) iskazna formula

Valuacija v : P → {0, 1} predstavlja funkciju koja dodeljuje atomima njihovu
istinitosnu vrednost. Interpretacija Iv : FP → {0, 1} je funkcija indukovana va-
luacijom v koja svakoj formuli iz skupa iskaznih formula FP dodeljuje istinitosnu
vrednost. Interpretacija se definiše rekurzivno:

• Iv(p) = 1 akko v(p) = 1, gde je p atom

• Iv(⊤) = 1, Iv(⊥) = 0

• Iv(¬A) = 1 akko Iv(A) = 0

• Iv(A ∧B) = 1 akko Iv(A) = 1 i Iv(B) = 1

• Iv(A ∨B) = 1 akko Iv(A) = 1 ili Iv(B) = 1
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• Iv(A ⇒ B) = 1 akko Iv(A) = 0 ili Iv(B) = 1

• Iv(A ⇔ B) = 1 akko Iv(A) = Iv(B)

Iskazna formula F je zadovoljiva ukoliko postoji valuacija v u kojoj se interpretira
kao tačna, odnosno ukoliko za neku valuaciju v važi Iv(F ) = 1. Ovo označavamo sa
v |= F i kažemo da je v model za F .

Problem SAT predstavlja problem ispitivanja zadovoljivosti iskazne formule u
proizvoljnom obliku3. Najčešće se proučava specijalni slučaj ovog problema nad
formulama u konjunktivnoj normalnoj formi (KNF). Iskazna formula F je u KNF

ukoliko je oblika K1 ∧ · · · ∧ Kn, gde su Ki, i ∈ {1 . . . n} klauze, odnosno iskazne
formule oblika l1 ∨ · · · ∨ lm, pri čemu su lj, j ∈ {1 . . .m} literali (atomi ili njihove
negacije).

Problem SAT pripada klasi NP kompletnih problema [1]. Bitno je napomenuti
da ima veliki broj praktičnih primena, pošto se mnogi problemi u praksi mogu svesti
na problem SAT. Većina modernih SAT rešavača zasnovana je na CDCL algoritmu
[8], što im omogućava da efikasno rešavaju probleme sa više hiljada promenljivih i
više desetina hiljada klauza.

2.4 Svođenje problema CSP na problem SAT

Svođenje problema CSP na problem SAT pojavilo se kao ideja krajem devedese-
tih godina prošlog veka [18], a glavna motivacija je bio nagli napredak u efikasnosti
SAT rešavača. Prvi pristup koji se pojavio uključuje kodiranje kompletnog proble-
ma CSP kao iskazne formule u KNF obliku, koja se zatim predaje SAT rešavaču na
rešavanje. Postoji više vrsta kodiranja:

• retko - svaka vrednost iz domena se kodira kao jedna iskazna promenljiva

• direktno - varijanta retkog kodiranja; za svaku nedozvoljenu kombinaciju
vrednosti promenljivih dodaje se po jedna klauza

• potporno - varijanta retkog kodiranja; koristi klauze da predstavi ograničenja
oblika „ako a ima vrednost i, onda b mora imati neku od vrednosti iz skupa I”

3Ponekad se u literaturi termin „SAT problem” odnosi isključivo na problem ispitivanja zadovo-
ljivosti iskazne formule u KNF obliku, dok se ponekad ta varijanta problema eksplicitno označava
kao CNF-SAT. Iako većina SAT rešavača očekuje na ulazu isključivo KNF formulu, postoje i
„neklauzalni” SAT rešavači koji mogu na ulazu dobiti iskaznu formulu u proizvoljnom obliku.
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• uređeno - za svaku vrednost a iz domena promenljive x postoji iskazna pro-
menljiva koja je tačna akko x ≤ a

• log (binarno) - iskazne promenljive kodiraju cifre u binarnom zapisu broja

Takođe, postoji mogućnost da se kodiranja kombinuju u okviru jednog problema
CSP, u zavisnosti od konkretnih ograničenja. Opisani pristup naziva se vredno ge-
nerisanje klauza (engl. eager encoding) i alat izložen u ovom radu počiva upravo na
tom pristupu.

Alternativni pristup svođenju problema CSP na problem SAT je lenjo generisa-
nje klauza (engl. lazy clause generation (LCG)) [11]. Ovaj pristup kombinuje vrline
SAT i CSP rešavača - koriste se mehanizmi učenja konfliktnih klauza (engl. nogood
learning) i povratnih skokova (engl. backjumping) iz prvih, kao i propagacija ogra-
ničenja iz drugih. Rezultat je alat koji u osnovi ima CSP rešavač, a u pozadini SAT
rešavač za koji se klauze generišu prilikom propagacije ili konflikta.
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Glava 3

Svođenje FlatZinc ograničenja na
problem SAT

3.1 Kodiranje domena promenljivih

Kako je centralna tema ovog rada svođenje FlatZinc ograničenja celobrojnog,
logičkog i skupovnog tipa na problem SAT, najpre je neophodno kodirati domene
promenljivih pomenutih tipova na jezik koji SAT rešavači razumeju - u obliku KNF
formula. Preciznije, svaka promenljiva će, u zavisnosti od svog domena, doprineti
određenim klauzama finalnoj KNF formuli koja predstavlja problem CSP. Takođe,
potrebno je formirati preslikavanje koje jednoznačno određuje vrednost promenljive
na osnovu zadovoljavajuće valuacije KNF formule. Iskazne promenljive korišćene za
kodiranje domena CSP promenljivih kasnije će figurisati u kodiranju ograničenja nad
tim promenljivama. Treba napomenuti da se nizovske promenljive kodiraju tako što
se svaki element niza kodira kao posebna promenljiva odgovarajućeg tipa (u daljem
tekstu označene sa x[i], gde je x ime niza, a i indeks promenljive u nizu).

Celobrojne promenljive

Celobrojne promenljive primarno su kodirane pomoću uređenog kodiranja. Kao
što je ranije pomenuto, ono podrazumeva uvođenje iskazne promenljive px,a za svaku
vrednost a iz domena promenljive x koja je tačna akko x ≤ a. Formalno,

∀a ∈ {l(x)− 1, . . . , u(x)}, px,a ⇔ x ≤ a

10
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pri čemu su l(x) i u(x) donja, odnosno gornja granica domena promenljive x. Takođe,
kako bi se obezbedila konzistentnost dodele (svakoj promenljivoj je dodeljena tačno
jedna vrednost iz domena), dodaju se sledeće klauze u KNF formulu:

∀i ∈ {l(x), . . . , u(x)}, ¬px,i−1 ∨ px,i

kao i sledeće jedinične granične klauze:

¬px,l(x)−1

px,u(x)

Vrednost ovako kodirane promenljive x može se odrediti pronalaženjem vrednosti
i ∈ D(x) za koju važi da je px,i tačno, a px,i−1 netačno u dobijenoj iskaznoj valua-
ciji koja zadovoljava KNF formulu (ukoliko je problem zadovoljiv, ovakva vrednost
sigurno postoji i jedinstvena je zbog uslova konzistentnosti dodele).

U slučaju da je domen promenljive oblika intervala [i, j], ovo je dovoljno za
njegovo kodiranje. Ukoliko to nije slučaj, domen se može posmatrati kao interval
koji sadrži „rupe”, tj. [i, j]\([k1, l1]∪· · ·∪ [kn, ln]). Kako bi se sprečilo da promenljiva
uzme neku od nedozvoljenih vrednosti, potrebno je dodati sledeće klauze:

∀i ∈ {1 . . . n}, px,ki−1 ∨ ¬px,li
Pored uređenog kodiranja, za kodiranje celobrojnih domena je u nekoliko situ-

acija korišćeno i retko kodiranje. Kod retkog kodiranja, svaka vrednost iz domena
promenljive predstavljena je pomoću jedne iskazne promenljive:

∀a ∈ D(x), sx,a ⇔ x = a

Kako je uređeno kodiranje primarno i primenjuje se za svaku celobrojnu promen-
ljivu, potrebno je dodati klauze koje ostvaruju vezu između ove dve vrste kodiranja:

∀a ∈ D(x), sx,a ⇔ px,a ∧ ¬px,a−1

odnosno nakon svođenja na KNF:

(¬sx,a ∨ px,a) ∧ (¬sx,a ∨ ¬px,a−1) ∧ (sx,a ∨ ¬px,a ∨ px,a−1)

Bitno je napomenuti da, u slučaju retkog kodiranja, nije potrebno dodavati kla-
uze koje obezbeđuju konzistentnost dodele, pošto je to implicitno urađeno vezom sa
uređenim kodiranjem.

11
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Logičke promenljive

Svaka logička promenljiva može se jednostavno kodirati pomoću jedne iskazne
promenljive:

qx ⇔ x = true

Skupovne promenljive

U jeziku FlatZinc, domen skupovne promenljive x je partitivni skup nekog datog
skupa Ax (tj. D(x) = P(Ax)). Skupovne promenljive kodirane su pomoću niza
iskaznih promenljivih, pri čemu iskazna promenljiva rx,a govori da li je element a iz
skupa Ax uključen u vrednost promenljive x ili ne:

∀a ∈ Ax, rx,a ⇔ a ∈ x

Može se primetiti da u slučaju valuacije koja dodeljuje svim rx,a za a ∈ D(x)

vrednost netačno, x postaje prazan skup.

3.2 Pomoćni koncepti

Pre samog kodiranja ograničenja, u ovom odeljku biće izloženo nekoliko pomoć-
nih koncepata koji olakšavaju dalji proces kodiranja. Nakon toga, biće prikazan sam
proces kodiranja pojedinačnih ograničenja, podeljenih po tipu. Težiće se da slična
ograničenja budu grupisana, kao i da se u slučaju kada kodiranje jednog ograničenja
može poslužiti kao osnov za kodiranje drugog, uvek prvo bude izloženo jednostavnije
ograničenje. Takođe, biće izložen primer koji ilustruje kodiranje različitih ograniče-
nja na konkretnom FlatZinc modelu.

Kodiranje primitivnog zbira/razlike

Kao što je detaljnije objašnjeno u literaturi [12], kodiranje primitivnog zbira
oblika x+ y ≤ c, pri čemu su x i y celobrojne promenljive, a c celobrojna konstanta,
može se izvršiti uređenim kodiranjem na sledeći način:

∧
a+b=c−1

(px,a ∨ py,b)

12
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Parametri a i b su celobrojni i važi a ∈ {l(x) − 1, . . . , u(x)}, b ∈ {l(y) −
1, . . . , u(y)}. Slična je situacija kada je u pitanju primitivna razlika oblika x−y ≤ c,
pri čemu za parametar b važi b ∈ {−u(y) − 1, . . . ,−l(y)}, a umesto literala py,b,
dodaje se literal ¬py,−b−1.

Dodatno, u oba slučaja pre kodiranja treba povesti računa da li su granični uslovi
zadovoljeni, tj. da li važi c ≥ l(x) + l(y) u slučaju zbira, odnosno c ≥ l(x)− r(y) u
slučaju razlike. Ukoliko to nije slučaj, nejednakost ne može biti zadovoljena.

Korišćenje pomoćnih promenljivih

U situaciji kada je iskaznu formulu u DNF-u (formula oblika
∨n

i=1

∧m
j=1 pij, gde

su pij literali) potrebno prebaciti u KNF, kako bi se smanjio rezultujući broj klauza
moguće je iskoristiti pomoćne promenljive. Ovo dolazi uz cenu održavanja ekviza-
dovoljivosti1 formule, ali ne i ekvivalentnosti. Konverzija se vrši na sledeći način:

n∨
i=1

m∧
j=1

pij 7→
n∧

i=1

m∧
j=1

(pij ∨ ¬hi)

pri čemu je potrebno dodati i disjunkciju pomoćnih promenljivih:

n∨
i=1

hi

Ekvivalencijski oblik ograničenja

Neka primitivna FlatZinc ograničenja se javljaju i u ekvivalencijskom obliku
(engl. reified):

constr ⇔ r

gde je constr FlatZinc primitivno ograničenje, a r logička FlatZinc promenljiva.
Ako pretpostavimo da je ograničenje constr kodirano pomoću sledeće KNF for-

mule:

n∧
i=1

m∨
j=1

pij

onda se njegov ekvivalencijski oblik kodira po sledećem principu (simbol 7→ označava
kodiranje):

1Dve iskazne formule su ekvizadovoljive ukoliko su obe zadovoljive ili obe nezadovoljive
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n∧
i=1

m∨
j=1

pij ⇔ r 7→ (3.1)

(¬r ∧
n∨

i=1

m∧
j=1

¬pij) ∨ (r ∧
n∧

i=1

m∨
j=1

pij) (3.2)

Leva strana disjunkcije (3.2) doprinosi sledećim klauzama:

¬r ∨ ¬H1

n∧
i=1

m∧
j=1

(¬pij ∨ ¬hi)

(
n∨

i=1

hi) ∨ ¬H1

Desna strana disjunkcije (3.2) doprinosi sledećim klauzama:

r ∨ ¬H2

n∧
i=1

(
m∨
j=1

pij) ∨ ¬H2

Najzad, kako mora važiti leva ili desna strana disjunkcije (3.2), dodaje se sledeća
klauza (pri čemu su sa H1 i H2 označene pomoćne promenljive):

H1 ∨H2

Problem nastaje ukoliko se među klauzama ograničenja koje se prevodi u ekviva-
lencijski oblik nalaze pomoćne promenljive. Kako korišćenje pomoćnih promenljivih
održava ekvizadovoljivost, ali ne i ekvivalentnost formule, gorenavedenim pristu-
pom se neće očuvati ekvivalentnost između zadovoljenosti ograničenja i vrednosti
promenljive r. Ovo je rešeno ili raspisivanjem originalnog ograničenja bez pomoćnih
promenljivih, po cenu većeg broja klauza, ili prilagođavanjem pomoćnih promen-
ljivih tako da održe ekvivalentnost formule (na primer, umesto pij ∨ ¬hi koristimo
(pij ∨ ¬hi) ∧ (¬pij ∨ hi)).

Pored ekvivalencijskog, postoji i implikacijski oblik ograničenja:

r ⇒ constr
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Kodira se relativno jednostavno, pošto se implikacija može lako svesti na dis-
junkciju:

r ⇒
n∧

i=1

m∨
j=1

pij 7→
n∧

i=1

(
m∨
j=1

pij) ∨ ¬r

Vredi napomenuti da je i ovde potrebno voditi računa da li se u ograničenju koje
se prevodi u implikacijski oblik koriste pomoćne promenljive.

Kodiranje supstitucija

U nekoliko ograničenja, deo postupka kodiranja uključuje kodiranje supstitucija
oblika x = c1 · x1 + c2 · x2, pri čemu je x novouvedena promenljiva. Prvi korak je
određivanje granica domena nove promenljive:

l(x) = min(c1 · l(x1), c1 · u(x1)) +min(c2 · l(x2), c2 · u(x2))

u(x) = max(c1 · l(x1), c1 · u(x1)) +max(c2 · l(x2), c2 · u(x2))

Nakon toga, supstitucija se kodira po sledećem principu, detaljnije objašnjenom
u literaturi [12]:

−x+ c1 · x1 + c2 · x2 ≤ 0 ∧ x− c1 · x1 − c2 · x2 ≤ 0

Prvi konjunkt kodira se na sledeći način:

∧
i+j+k=−2

(¬px,−i−1 ∨ px1,a ∨ px2,b)

pri čemu i ∈ {−u(x) − 1, . . . ,−l(x)}, j ∈ {l(c1 · x1) − 1, . . . , u(c1 · x1)} i k ∈
{l(c2 · x2)− 1, . . . , u(c2 · x2)}, a parametri a i b se određuju na osnovu koeficijenata
c1 i c2. Ukoliko važi c1 > 0, onda je a = ⌊j/c1⌋, a inače a = ⌈j/c1⌉ − 1 i literal koji
uključuje a je negiran. Ukoliko važi c2 > 0, onda je b = ⌊k/c2⌋, a inače b = ⌈k/c2⌉−1

i literal koji uključuje b je negiran.
Drugi konjunkt kodira se na način sličan prvom:

∧
i+j+k=−2

(px,i ∨ px1,a ∨ px2,b)

pri čemu i ∈ {l(x) − 1, . . . , u(x)}, j ∈ {l(−c1 · x1) − 1, . . . , u(−c1 · x1)} i k ∈
{l(−c2 ·x2)−1, . . . , u(−c2 ·x2)}, a parametri a i b se određuju na osnovu koeficijenata
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c1 i c2. Ukoliko važi c1 < 0, onda je a = −⌊j/c1⌋, a inače a = −⌈j/c1⌉ − 1 i literal
koji uključuje a je negiran. Ukoliko važi c2 < 0, onda je b = −⌊k/c2⌋, a inače
b = −⌈k/c2⌉ − 1 i literal koji uključuje b je negiran.

Korišćenje parametara umesto promenljivih

U FlatZinc modelima postoji mogućnost da se na mestu argumenta koji je na-
značen kao promenljiva nađe parametar, ali ne i obratno. Ovo je rešeno uvođenjem
pomoćnih FlatZinc promenljivih koje ne učestvuju u ispisu i imaju fiksirane vred-
nosti.

Ukoliko celobrojni parametar ima vrednost a, kodira se na sledeći način:

px,a

¬px,a−1

Ukoliko logički parametar ima vrednost true, biće kodiran jediničnom klauzom
qpom, odnosno ukoliko ima vrednost false jediničnom klauzom ¬qpom.

Ukoliko skupovni parametar ima vrednosti a1, . . . , an, biće kodiran jediničnim
klauzama:

rpom,a1

...

rpom,an

3.3 Celobrojna ograničenja

Kao što je pomenuto u prethodnom odeljku, u ovom odeljku biće izloženi načini
kodiranja pojedinačnih celobrojnih ograničenja.

Ograničenje int_le

Ovo ograničenje ima oblik:

int_le(var int : a, var int : b)

i zahteva da važi nejednakost a ≤ b. Može se svesti na kodiranje primitivne razlike
a− b ≤ 0.
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Ograničenje int_lt

Ovo ograničenje ima oblik:

int_lt(var int : a, var int : b)

i zahteva da važi nejednakost a < b. Može se svesti na kodiranje primitivne razlike
a− b ≤ −1.

Ograničenje int_eq

Ovo ograničenje ima oblik:

int_eq(var int : a, var int : b)

i zahteva da važi jednakost a = b. Može se svesti na kodiranje ograničenja int_le(a, b)

i int_le(b, a), a zatim konjunkciju dobijenih KNF formula.

Ograničenje int_ne

Ovo ograničenje ima oblik:

int_ne(var int : a, var int : b)

i zahteva da važi nejednakost a ̸= b. Može se svesti na kodiranje ograničenja
int_lt(a, b) i int_lt(b, a), a zatim disjunkciju dobijenih KNF formula. Kako bi do-
bijena formula ostala u KNF-u, mogu se iskoristiti dve pomoćne promenljive h1 i
h2. KNF formula dobijena kodiranjem prvog ograničenja prevodi se u njoj ekviza-
dovoljivu formulu:

n1∧
i=1

m1∨
j=1

pij 7→
n1∧
i=1

(¬h1 ∨
m1∨
j=1

pij)

Slično važi i za KNF formulu dobijenu kodiranjem drugog ograničenja:

n2∧
i=1

m2∨
j=1

pij 7→
n2∧
i=1

(¬h2 ∨
m2∨
j=1

pij)

Najzad, kako mora biti zadovoljeno barem jedno od dva ograničenja, dodaje se
sledeća klauza:

h1 ∨ h2
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Ograničenje int_max

Ovo ograničenje ima oblik:

int_max(var int : a, var int : b, var int : c)

i zahteva da važi max(a, b) = c. Ideja kodiranja je sledeća:

a ≤ c ∧ b ≤ c ∧ (c ≤ a ∨ c ≤ b)

Može se svesti na konjunkciju KNF formula dobijenih kodiranjem ograničenja
int_le(a, c) i int_le(b, c), a zatim konjunkciju te formule sa disjunkcijom KNF for-
mula dobijenih kodiranjem ograničenja int_le(c, a) i int_le(c, b). Kako bi pomenuta
disjunkcija ostala u KNF-u, moguće je upotrebiti pomoćne promenljive, slično kao
kod ograničenja int_ne.

Ograničenje int_min

Ovo ograničenje ima oblik:

int_min(var int : a, var int : b, var int : c)

i zahteva da važi min(a, b) = c. Ideja kodiranja je sledeća:

c ≤ a ∧ c ≤ b ∧ (a ≤ c ∨ b ≤ c)

Može se svesti na konjunkciju KNF formula dobijenih kodiranjem ograničenja
int_le(c, a) i int_le(c, b), a zatim konjunkciju te formule sa disjunkcijom KNF for-
mula dobijenih kodiranjem ograničenja int_le(a, c) i int_le(b, c). Kako bi pomenuta
disjunkcija ostala u KNF-u, moguće je upotrebiti pomoćne promenljive, slično kao
kod ograničenja int_ne.

Ograničenje int_abs

Ovo ograničenje ima oblik:

int_abs(var int : a, var int : b)

i zahteva da važi |a| = b. Ideja kodiranja je sledeća:

max(a,−a) = b
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što je ekvivalentno sa:

a ≤ b ∧ −a ≤ b ∧ (b ≤ a ∨ b ≤ −a)

Prvi konjunkt se može dobiti kodiranjem ograničenja int_le(a, b). Drugi ko-
njunkt se svodi na sledeću nejednakost: a + b ≥ 0; odnosno na negaciju kodiranja
primitivnog zbira a+b ≤ −1. Kako se negacijom KNF formule dobija DNF formula,
koriste se pomoćne promenljive da bi se održao KNF oblik. Treći konjunkt je zapra-
vo disjunkcija formula dobijenih kodiranjem ograničenja int_le(a, b) i primitivnog
zbira a+b ≤ 0. Kako bi pomenuta disjunkcija ostala u KNF-u, moguće je upotrebiti
pomoćne promenljive, slično kao kod ograničenja int_ne.

Ograničenje int_plus

Ovo ograničenje ima oblik:

int_plus(var int : a, var int : b, var int : c)

i zahteva da važi jednakost a+b = c. Svodi se na kodiranje supstitucije c = c1·a+c2·b,
pri čemu su oba koeficijenta jednaka 1, a granice domena promenljive c su unapred
poznate.

Ograničenje array_int_element

Ovo ograničenje ima oblik:

array_int_element(var int : b, array [int] of int : as, var int : c)

i zahteva da važi jednakost as[b] = c, pri čemu je as niz celobrojnih konstanti. Ideja
kodiranja je sledeća:

∨
i∈D(b)∩I(as)

b = i ∧ c = as[i]

pri čemu je I(as) skup indeksa niza as. Jednakost b = i kodira se pomoću dve
jedinične klauze:

pb,i

¬pb,i−1
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Analogno tome se kodira i jednakost c = as[i]. Kako bi formula bila u KNF
obliku, koriste se pomoćne promenljive.

Ograničenje array_int_var_element

Ovo ograničenje ima oblik:

array_int_var_element(var int : b, array [int] of var int : as, var int : c)

i zahteva da važi jednakost as[b] = c, pri čemu je as niz celobrojnih promenljivih.
Kodira se analogno ograničenju array_int_element, osim što se jednakost c = as[i]

ovog puta svodi na kodiranje ograničenja int_eq(c, as[i]).

Ograničenje array_int_maximum

Ovo ograničenje ima oblik:

array_int_maximum(var int : m, array [int] of int : x)

i zahteva da promenljiva m bude jednaka maksimalnoj vrednosti iz niza x. Ideja
kodiranja je sledeća:

∧
i∈I(x)

m ≥ x[i] ∧ (
∨

i∈I(x)

m ≤ x[i]))

Poređenja m ≥ x[i] i m ≤ x[i] svode se na kodiranje ograničenja int_le(x[i],m),
odnosno int_le(m,x[i]). Kako bi disjunkcija sa desne strane ostala u KNF-u, koriste
se pomoćne promenljive.

Ograničenje array_int_minimum

Ovo ograničenje ima oblik:

array_int_minimum(var int : m, array [int] of int : x)

i zahteva da promenljiva m bude jednaka minimalnoj vrednosti iz niza x. Ideja
kodiranja je sledeća:

∧
i∈I(x)

m ≤ x[i] ∧ (
∨

i∈I(x)

m ≥ x[i]))
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Poređenja m ≤ x[i] i m ≥ x[i] svode se na kodiranje ograničenja int_le(m,x[i]),
odnosno int_le(x[i],m). Kako bi disjunkcija sa desne strane ostala u KNF-u, koriste
se pomoćne promenljive.

Ograničenje int_times

Ovo ograničenje ima oblik:

int_times(var int : a, var int : b, var int : c)

i zahteva da važi jednakost a·b = c. U osnovi kodiranja nalazi se ideja da se vrednost
promenljive c ograniči vrednostima promenljivih a i b. U slučaju da su svi elementi
domena činilaca nenegativni, usled monotonosti operacije množenja, ovo je moguće
postići ispunjavanjem sledećih uslova:

∀i ∈ D(a), j ∈ D(b) (a ≤ i ∧ b ≤ j ⇒ c ≤ i · j) (3.3)

∀i ∈ D(a), j ∈ D(b) (a ≥ i ∧ b ≥ j ⇒ c ≥ i · j) (3.4)

Gorenavedeni uslovi ekvivalentni su sledećim klauzama:

∀i ∈ D(a), j ∈ D(b) (¬pa,i ∨ ¬pb,j ∨ pc,i·j) (3.5)

∀i ∈ D(a), j ∈ D(b) (pa,i−1 ∨ pb,j−1 ∨ ¬pc,i·j−1) (3.6)

U slučaju da je i · j ≥ u(c) formula (3.3) je tautologija, pa se ne mora dodavati.
Slično važi za formulu (3.4) kada je ispunjen uslov i · j ≤ l(c).

U slučaju da je i · j < l(c), promenljiva pc,i·j će biti uvek netačna, pa se ne
mora dodavati u formulu (3.3). Slično važi za formulu (3.4) kada je ispunjen uslov
i · j > u(c); literal ¬pc,i·j−1 će biti uvek netačan, pa se ne mora dodavati u formulu.

Ukoliko nisu svi elementi domena činilaca isključivo nenegativni, uslove (3.1) i
(3.2) je potrebno preformulisati:

(∀mi,Mi ∈ D(a))(∀mj,Mj ∈ D(b)) (mi ≤ a ≤ Mi ∧mj ≤ b ≤ Mj

⇒ c ≤ Mc)

(∀mi,Mi ∈ D(a))(∀mj,Mj ∈ D(b)) (mi ≤ a ≤ Mi ∧mj ≤ b ≤ Mj

⇒ c ≥ mc)
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gde je Mc = max(mi ·mj,mi ·Mj,Mi ·mj,Mi ·Mj), mc = min(mi ·mj,mi ·Mj,Mi ·
mj,Mi ·Mj) i važi mi ≤ Mi, odnosno mj ≤ Mj.

Dobijene klauze su ovaj put sledeće:

pa,mi−1 ∨ ¬pa,Mi
∨ pb,mj−1 ∨ ¬pb,Mj

∨ pc,Mc (3.7)

pa,mi−1 ∨ ¬pa,Mi
∨ pb,mj−1 ∨ ¬pb,Mj

∨ ¬pc,mc−1 (3.8)

Formula (3.5) se može obrisati u slučaju da je u(c) ≤ Mc, a u slučaju da važi
l(c) > Mc, literal pc,Mc se može ukloniti iz nje.

Slično, formula (3.6) se može obrisati u slučaju da je l(c) ≥ mc, a u slučaju da
važi u(c) < Mc, literal pc,mc−1 se može ukloniti iz nje.

Ograničenje int_div

Ovo ograničenje ima oblik:

int_div(var int : a, var int : b, var int : c)

i zahteva da važi jednakost a/b = c, gde je / operator celobrojnog deljenja. Iz
jednakosti a/b = c sledi:

a = b · c+ r

za neko r ∈ {0, . . . , b− 1}. Dakle, u slučaju pozitivnih domena promenljivih, bilo bi
dovoljno kodirati sledeće uslove:

a = b · c+ r ∧ r ≥ 0 ∧ r ≤ b− 1

Ipak, kako domeni celobrojnih promenljivih mogu uključivati negativne vred-
nosti, treba voditi računa na koji način „zaokružiti” količnik. Npr. −5/2 može se
tumačiti kao −2 ili −3 u zavisnosti od znaka ostatka. Kako je u jeziku MiniZinc
generalno praksa da ostatak ima isti znak kao deljenik, u gorenavedenom slučaju
ostatak bi bio −1, a količnik −2. Kako bi se ispoštovao ovaj uslov, kodiranje ide po
sledećem principu:
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a = b · c+ r ∧

|r| < |b| ∧

a ≥ 0 ⇒ r ≥ 0 ∧

a ≤ 0 ⇒ r ≤ 0

Prvi konjunkt se dobija uvođenjem pomoćne celobrojne promenljive bc i ogra-
ničenja int_times(b, c, bc), a zatim i ograničenja int_plus(bc, r, a). Drugi konjunkt
se dobija uvođenjem pomoćnih celobrojnih promenljivih r′ i b′, a zatim i ograniče-
nja int_abs(r, r′), int_abs(b, b′) i int_lt(r′, b′). Treći i četvrti konjunkt svode se na
jednostavne disjunkcije literala:

pa,−1 ∨ ¬pr,−1

¬pa,0 ∨ pr,0

Ograničenje int_mod

Ovo ograničenje ima oblik:

int_mod(var int : a, var int : b, var int : c)

i zahteva da važi jednakost a%b = c, gde je % operator računanja ostatka pri celo-
brojnom deljenju. Kodira se analogno ograničenju int_div, osim što ulogu ostatka
r preuzima promenljiva c, a količnik je ovog puta pomoćna promenljiva p.

Ograničenje int_pow

Ovo ograničenje ima oblik:

int_pow(var int : x, var int : y, var int : z)

i zahteva da važi jednakost xy = z. Za kodiranje ovog ograničenja korišćeno je retko
kodiranje:

∨
i∈D(x),j∈D(y)

sx,i ∧ sy,j ∧ sz,ij
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Kako je navedena formula u DNF-u, korišćene su pomoćne promenljive kako bi
bila prebačena u KNF. Takođe, nema potrebe dodavati klauze kod kojih ij /∈ D(z).
Specijalno, u slučaju da ne postoje i ∈ D(x) i j ∈ D(y) za koje važi ij ∈ D(z), gornja
disjunkcija postaje prazna. Na taj način nastaje prazna klauza, što je ekvivalentno
sa ⊥, pa formula postaje nezadovoljiva.

Ograničenje int_lin_le

Ovo ograničenje ima oblik:

int_lin_le(array [int] of int : as, array [int] of var int : bs, int : c)

i zahteva da važi nejednakost
∑n

i=1 as[i] · bs[i] ≤ c, pri čemu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova dva
niza. Kodiranje ovog ograničenja oslanja se na supstitucije ([12]):

x1 = as[1] · bs[1] + as[2] · bs[2]

∀i ∈ {2 . . . n− 1} xi = xi−1 + as[i+ 1] · bs[i+ 1]

Na ovaj način postiže se da promenljiva xn−1 predstavlja sumu
∑n

i=1 as[i] · bs[i].
Kako bi se ograničenje kodiralo, preostaje još kodiranje same nejednakosti, korišće-
njem int_le(xn−1, c).

Ograničenje int_lin_eq

Ovo ograničenje ima oblik:

int_lin_eq(array [int] of int : as, array [int] of var int : bs, int : c)

i zahteva da važi nejednakost
∑n

i=1 as[i] · bs[i] = c, pri čemu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova
dva niza. Kodira se analogno ograničenju int_lin_le, osim što se na kraju koristi
ograničenje int_eq(xn−1, c).

Ograničenje int_lin_ne

Ovo ograničenje ima oblik:

int_lin_ne(array [int] of int : as, array [int] of var int : bs, int : c)
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i zahteva da važi nejednakost
∑n

i=1 as[i] · bs[i] ̸= c, pri čemu je as niz celobrojnih
konstanti, bs niz celobrojnih promenljivih, a n broj elemenata u svakom od ova
dva niza. Kodira se analogno ograničenju int_lin_le, osim što se na kraju koristi
ograničenje int_ne(xn−1, c).

Ekvivalencijski oblici ograničenja

Ograničenja: int_eq_reif, int_le_reif, int_lin_eq_reif, int_lin_le_reif, int_lin_ne_reif,
int_lt_reif, int_ne_reif, kao i njihove verzije sa implikacijom (sufiks _imp, umesto
_reif), kodiraju se ranije opisanim postupkom kodiranja ekvivalencijskih, odnosno
implikacijskih oblika ograničenja.

3.4 Logička ograničenja

U ovom odeljku biće izloženi načini kodiranja pojedinačnih logičkih ograničenja.

Ograničenje bool_le

Ovo ograničenje ima oblik:

bool_le(var bool : x, var bool : y)

i zahteva da važi x ≤ y, pri čemu se smatra da važi uređenje u kome je vrednost
logičke promenljive tačno veća od vrednosti netačno. Kodira se sledećom klauzom:

¬qx ∨ qy

Ograničenje bool_lt

Ovo ograničenje ima oblik:

bool_lt(var bool : x, var bool : y)

i zahteva da važi x < y, pri čemu se smatra da važi isto uređenje kao u ograničenju
bool_le. Kodira se sledećim jediničnim klauzama:

¬qx
qy
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Ograničenje bool_eq

Ovo ograničenje ima oblik:

bool_eq(var bool : x, var bool : y)

i zahteva da važi x = y. Kodira se na sledeći način:

(qx ∨ ¬qy) ∧ (¬qx ∨ qy)

Ograničenje bool_not

Ovo ograničenje ima oblik:

bool_not(var bool : x, var bool : y)

i zahteva da važi x ̸= y. Kodira se na sledeći način:

(qx ∨ qy) ∧ (¬qx ∨ ¬qy)

Ograničenje bool_xor

Ovo ograničenje ima dva različita oblika. Prvi oblik je:

bool_xor(var bool : x, var bool : y)

i zahteva da izraz x⊕ y bude tačan, pri čemu je ⊕ operator ekskluzivne disjunkcije.
Kako je x⊕y tačno akko važi x ̸= y, kodiranje ovog ograničenja svodi se na kodiranje
ograničenja bool_not(x, y).

Drugi oblik ovog ograničenja je:

bool_xor(var bool : a, var bool : b, var bool : r)

i zahteva da važi r ⇔ a⊕ b. Kodira se na sledeći način:

(qa ∨ qb ∨ ¬qr) ∧ (¬qa ∨ ¬qb ∨ ¬qr) ∧

(¬qa ∨ qb ∨ qr) ∧ (qa ∨ ¬qb ∨ qr)
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Ograničenje bool_and

Ovo ograničenje ima oblik:

bool_and(var bool : a, var bool : b, var bool : r)

i zahteva da važi r ⇔ a ∧ b. Kodira se na sledeći način:

(qa ∨ ¬qr) ∧ (qb ∨ ¬qr) ∧ (¬qa ∨ ¬qb ∨ qr)

Ograničenje bool_or

Ovo ograničenje ima oblik:

bool_or(var bool : a, var bool : b, var bool : r)

i zahteva da važi r ⇔ a ∨ b. Kodira se na sledeći način:

(¬qa ∨ qr) ∧ (¬qb ∨ qr) ∧ (qa ∨ qb ∨ ¬qr)

Ograničenje bool_clause

Ovo ograničenje ima oblik:

bool_clause(array [int] of var bool : as, array [int] of var bool : bs)

i zahteva da disjunkcija (
∨n

i=1 a[i])∨ (
∨m

j=1 ¬b[j]) bude tačna. Kako oba niza sadrže
logičke promenljive, kodiranje se svodi na dodavanje jedne klauze:

(
n∨

i=1

qa[i]) ∨ (
m∨
j=1

¬qb[j])

Ograničenje array_bool_and

Ovo ograničenje ima oblik:

array_bool_and(array [int] of var bool : as, var bool : r)

i zahteva da važi r ⇔
∧n

i=1 as[i]. Navedeni izraz može se svesti na KNF oblik sledećim
transformacijama:
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r ⇔
n∧

i=1

as[i] ≡

(¬r ∨
n∧

i=1

as[i]) ∧ (r ∨ ¬
n∧

i=1

as[i]) ≡

n∧
i=1

(¬r∨as[i]) ∧ (r ∨
n∨

i=1

¬as[i])

Za kodiranje krajnjeg izraza koriste se sledeće klauze:

∀i ∈ {1, . . . , n} (¬qr ∨ qas[i])

qr ∨
n∨

i=1

¬qas[i]

Ograničenje array_bool_or

Ovo ograničenje ima oblik:

array_bool_or(array [int] of var bool : as, var bool : r)

i zahteva da važi r ⇔
∨n

i=1 as[i]. Navedeni izraz može se svesti na KNF oblik sledećim
transformacijama:

r ⇔
n∨

i=1

as[i] ≡

(¬r ∨
n∨

i=1

as[i]) ∧ (r ∨ ¬
n∨

i=1

as[i]) ≡

(¬r ∨
n∨

i=1

as[i]) ∧ (r ∨
n∧

i=1

¬as[i]) ≡

(¬r ∨
n∨

i=1

as[i]) ∧
n∧

i=1

(r ∨ ¬as[i])

Za kodiranje krajnjeg izraza koriste se sledeće klauze:

∀i ∈ {1, . . . , n} (qr ∨ ¬qas[i])

¬qr ∨
n∨

i=1

qas[i]
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Ograničenje array_bool_element

Ovo ograničenje ima oblik:

array_bool_element(var int : b, array [int] of bool : as, var bool : c)

i zahteva da važi as[b] = c, pri čemu je as niz logičkih konstanti. Ideja kodiranja je
sledeća:

∨
i∈D(b)∩I(as)

b = i ∧ c = as[i]

pri čemu je I(as) skup indeksa niza as. Jednakost b = i kodira se pomoću dve
jedinične klauze:

pb,i

¬pb,i−1

Kodiranje jednakosti c = as[i] svodi se na proveru vrednosti konstante as[i].
Ukoliko je ta vrednost tačno, dodaje se jedinična klauza qc. U suprotnom, dodaje
se jedinična klauza ¬qc. Kako bi formula bila u KNF obliku, koriste se pomoćne
promenljive.

Ograničenje array_var_bool_element

Ovo ograničenje ima oblik:

array_var_bool_element(var int : b, array [int] of var bool : as, var bool : c)

i zahteva da važi as[b] = c, pri čemu je as niz logičkih promenljivih. Kodira se
analogno ograničenju array_bool_element, osim što se jednakost c = as[i] ovog
puta svodi na kodiranje ograničenja bool_eq(c, as[i]).

Ograničenje bool_lin_eq

Ovo ograničenje ima oblik:

bool_lin_eq(array [int] of int : as, array [int] of var bool : bs, var int : c)

i zahteva da važi jednakost
∑n

i=1 as[i] · bs[i] = c, pri čemu je as niz celobrojnih
konstanti, bs niz logičkih promenljivih, a n broj elemenata u svakom od ova dva
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niza. U praksi, niz as najčešće čine vrednosti 0 i 1, pa se ovo ograničenje svodi
na ograničenje kardinalnosti - vrednost promenljive c diktira koliko će elemenata
niza bs uz koje je koeficijent 1 biti tačno. Kodiranje ovog ograničenja oslanja se na
supstitucije, slično celobrojnim linearnim ograničenjima:

x1 = as[1] · bs[1] + as[2] · bs[2]

∀i ∈ {2 . . . n− 1} xi = xi−1 + as[i+ 1] · bs[i+ 1]

Pri čemu se u ovom kontekstu logičke promenljive bs[i] posmatraju kao celobrojne
promenljive sa domenom {0, 1}. Takođe, pri kodiranju pojedinačnih supstitucija,
za pomoćne promenljive xi korišćeno je retko kodiranje, pa kodiranje supstitucije
x = c1 · x1 + c2 · x2 funkcioniše po sledećem principu:

∨
i=c1·j+c2·k

(sx,i ∧ sx1,j ∧ sx2,k)

pri čemu važi i ∈ D(x), j ∈ D(x1) i k ∈ D(x2). Gorenavedena formula je u DNF-u,
pa se za konverziju u KNF koriste pomoćne promenljive. Treba napomenuti da se, u
slučaju da je x1 ili x2 zapravo jedna od logičkih promenljivih bs[i], umesto iskaznih
promenljivih sx1,j(ili sx2,k) koriste literali qbs[i] ili ¬qbs[i], u zavisnosti od toga da li je
j (ili k) jednako 1 ili 0, respektivno.

Kako bi se ograničenje kodiralo, preostaje još kodiranje same jednakosti, kori-
šćenjem ograničenja int_eq(xn−1, c).

Ograničenje bool_lin_le

Ovo ograničenje ima oblik:

bool_lin_le(array [int] of int : as, array [int] of var bool : bs, var int : c)

i zahteva da važi nejednakost
∑n

i=1 as[i] · bs[i] ̸= c, pri čemu je as niz celobrojnih
konstanti, bs niz logičkih promenljivih, a n broj elemenata u svakom od ova dva niza.
Kodira se analogno ograničenju bool_lin_eq, osim što se na kraju koristi ograničenje
int_le(xn−1, c).

Ograničenje array_bool_xor

Ovo ograničenje ima oblik:

array_bool_xor(array [int] of var bool : as)
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i zahteva da formula ⊕n
i=1as[i] bude tačna, pri čemu je n broj elemenata niza as.

Pri kodiranju, uvode se sledeće pomoćne promenljive:

r1 = as[1]⊕ as[2]

∀i ∈ {2 . . . n− 2} ri = ri−1 ⊕ as[i+ 1]

pri čemu se kodiranje jednakosti r1 = as[1] ⊕ as[2] svodi na kodiranje ograničenja
bool_xor(as[1], as[2], r1). Po završetku kodiranja gorenavedenih jednakosti, u pro-
menljivoj rn−2 sačuvana je vrednost izraza ⊕n−1

i=1 as[i]. Kako bi se osiguralo da formula
⊕n

i=1as[i] bude tačna, potrebno je obezbediti da vrednosti promenljivih rn−2 i as[n]
budu različite. Ovo se može postići kodiranjem ograničenja int_xor(rn−2, as[n]).

Ograničenje bool2int

Ovo ograničenje ima oblik:

bool2int(var bool : a, var int : b)

i zahteva da se domen promenljive b svede na {0, 1} i da važi ekvivalencija a ⇔ (b =

1). Može se kodirati na sledeći način:

(¬a ∧ (b = 0)) ∨ (a ∧ (b = 1))

što je ekvivalentno sa:

(¬qa ∧ pb,0 ∧ ¬pb,−1) ∨ (qa ∧ pb,1 ∧ ¬pb,0)

Gorenavedena formula je u DNF-u, pa se korišćenjem dve pomoćne promenljive
svodi na KNF.

Ograničenje bool_eq_reif

Ovo ograničenje ima oblik:

bool_eq_reif(var bool : a, var int : b, var int : r)

i zahteva da važi r ⇔ (a = b). Kodira se dodavanjem sledećih klauza:
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qr ∨ ¬qa ∨ ¬qb
qr ∨ qa ∨ qb

¬qr ∨ qa ∨ ¬qb
¬qr ∨ ¬qa ∨ qb

Ograničenje bool_le_reif

Ovo ograničenje ima oblik:

bool_le_reif(var bool : a, var int : b, var int : r)

i zahteva da važi r ⇔ (a ≤ b). Kodira se dodavanjem sledećih klauza:

¬qr ∨ ¬qa ∨ qb

qr ∨ qa

qr ∨ ¬qb

Ograničenje bool_lt_reif

Ovo ograničenje ima oblik:

bool_lt_reif(var bool : a, var int : b, var int : r)

i zahteva da važi r ⇔ (a < b). Kodira se dodavanjem sledećih klauza:

qr ∨ qa ∨ ¬qb
¬qr ∨ ¬qa
¬qr ∨ qb
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3.5 Skupovna ograničenja

U ovom odeljku biće izloženi načini kodiranja pojedinačnih skupovnih ograniče-
nja.

Ograničenje set_in

Ovo ograničenje ima dva različita oblika. Prvi oblik je:

set_in(var int : x, set of int : S)

i zahteva da važi x ∈ S, pri čemu je S skupovni parametar. Ideja kodiranja je
sledeća:

∨
i∈S∩D(x)

x = i

što je ekvivalentno sa:

∨
i∈S∩D(x)

px,i ∧ ¬px,i−1

Kako je formula iznad u DNF-u, za prevođenje u KNF se koriste pomoćne pro-
menljive.

Drugi oblik ovog ograničenja je:

set_in(var int : x, var set of int : S)

i zahteva da važi x ∈ S, pri čemu je S skupovna promenljiva. Ideja kodiranja je
sledeća:

∨
i∈AS∩D(x)

(x = i) ∧ (i ∈ S) (3.9)

Podsetimo se, domen skupovne promenljive S se u jeziku FlatZinc definiše kao
partitivni skup nekog datog skupa AS, tj. D(S) = P (AS). Formula (3.9) je ekviva-
lentna sa:

∨
i∈AS∩D(x)

px,i ∧ ¬px,i−1 ∧ rS,i

Kako je formula iznad u DNF-u, za prevođenje u KNF se koriste pomoćne pro-
menljive.
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Ograničenje set_eq

Ovo ograničenje ima oblik:

set_eq(var set of int : x, var set of int : y)

i zahteva da važi x = y. Kodiranje se vrši na sledeći način:

(∀i ∈ Ax \ Ay) ¬rx,i
(∀i ∈ Ay \ Ax) ¬ry,i

(∀i ∈ Ax ∩ Ay) (rx,i ∨ ¬ry.i) ∧ (¬rx,i ∨ ry,i)

Ograničenje set_ne

Ovo ograničenje ima oblik:

set_ne(var set of int : x, var set of int : y)

i zahteva da važi x ̸= y. Kodiranje se vrši na sledeći način:

(∀i ∈ Ax ∩ Ay) (rx,i∨ry.i ∨ ¬hi) ∧ (¬rx,i ∨ ¬ry,i ∨ ¬hi)

(
∨

i∈Ax\Ay

rx,i) ∨ (
∨

j∈Ay\Ax

ry,j) ∨ (
∨

k∈Ax∪Ay

hk)

Ograničenje set_subset

Ovo ograničenje ima oblik:

set_subset(var set of int : x, var set of int : y)

i zahteva da važi x ⊆ y. Kodiranje se vrši na sledeći način:

(∀i ∈ Ax \ Ay) ¬rx,i
(∀i ∈ Ax ∩ Ay) (¬rx,i ∨ ry,i)

Ograničenje set_superset

Ovo ograničenje ima oblik:

set_superset(var set of int : x, var set of int : y)

i zahteva da važi x ⊇ y. Svodi se na kodiranje ograničenja set_subset(y, x).
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Ograničenje set_intersect

Ovo ograničenje ima oblik:

set_intersect(var set of int : x, var set of int : y, var set of int : z)

i zahteva da važi z = x ∩ y. Kodira se na sledeći način:

(∀i ∈ Ax \ Ay) ¬rz,i
(∀i ∈ Ay \ Ax) ¬rz,i
(∀i ∈ Ax ∩ Ay) rz,i ⇔ (rx,i ∧ ry,i)

pri čemu se kodiranje gornje ekvivalencije svodi na kodiranje ograničenja
bool_and(rx,i, ry,i, rz,i).

Ograničenje set_union

Ovo ograničenje ima oblik:

set_union(var set of int : x, var set of int : y, var set of int : z)

i zahteva da važi z = x ∪ y. Kodira se na sledeći način:

(∀i ∈ Ax \ Ay) (rx,i ∨ ¬rz.i) ∧ (¬rx,i ∨ rz,i)

(∀i ∈ Ay \ Ax) (ry,i ∨ ¬rz.i) ∧ (¬ry,i ∨ rz,i)

(∀i ∈ Ax ∩ Ay) rz,i ⇔ (rx,i ∨ ry,i)

pri čemu se kodiranje gornje ekvivalencije svodi na kodiranje ograničenja
bool_or(rx,i, ry,i, rz,i).

Ograničenje set_diff

Ovo ograničenje ima oblik:

set_diff(var set of int : x, var set of int : y, var set of int : z)

i zahteva da važi z = x \ y. Kodira se na sledeći način:

(∀i ∈ Ax \ Ay) (rx,i ∨ ¬rz.i) ∧ (¬rx,i ∨ rz,i)

(∀i ∈ Ax ∩ Ay) (¬rz,i ∨ rx,i) ∧ (¬rz,i ∨ ¬ry,i) ∧ (rz,i ∨ ¬rx,i ∨ ry,i)

35



GLAVA 3. SVOÐENJE FLATZINC OGRANIČENJA NA PROBLEM SAT

Ograničenje set_symdiff

Ovo ograničenje ima oblik:

set_symdiff(var set of int : x, var set of int : y, var set of int : z)

i zahteva da z bude simetrična razlika skupova x i y, odnosno da važi z = (x \ y) ∪
(y \ x). Kodira se na sledeći način:

(∀i ∈ Ax \ Ay) (rx,i ∨ ¬rz.i) ∧ (¬rx,i ∨ rz,i)

(∀i ∈ Ay \ Ax) (ry,i ∨ ¬rz.i) ∧ (¬ry,i ∨ rz,i)

(∀i ∈ Ax ∩ Ay) rz,i ⇔ (¬(rx,i ⇔ ry,i))

pri čemu se kodiranje gornje ekvivalencije svodi na kodiranje ograničenja
bool_not_reif(rx,i, ry,i, rz,i).

Ograničenje array_set_element

Ovo ograničenje ima oblik:

array_set_element(var int : b, array [int] of set of int : as, var set of int : c)

i zahteva da važi as[b] = c, pri čemu je as niz skupovnih parametara. Ideja kodiranja
je sledeća:

∨
i∈Ac∩I(as)

b = i ∧ c = as[i]

pri čemu je I(as) skup indeksa niza as. Jednakost b = i kodira se pomoću dve
jedinične klauze:

pb,i

¬pb,i−1

Jednakost c = as[i] kodira se na sledeći način:

(∀i ∈ Ac \ as[i]) ¬rc,i
(∀i ∈ Ac ∩ as[i]) rc,i
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Kako bi formula bila u KNF obliku, koriste se pomoćne promenljive. Treba
naglasiti da, u slučaju kada je za neko i skup as[i]\Ac neprazan, jednakost c = as[i]

ne može biti zadovoljena, pa ne treba dodavati klauze vezane za nju.

Ograničenje array_var_set_element

Ovo ograničenje ima oblik:

array_var_set_element(var int : b, array [int] of var set of int : as, var set of int : c)

i zahteva da važi as[b] = c, pri čemu je as niz skupovnih promenljivih. Kodira se
analogno ograničenju array_set_element, osim što se jednakost c = as[i] ovog puta
svodi na kodiranje ograničenja set_eq(c, as[i]).

Ograničenje set_card

Ovo ograničenje ima oblik:

set_card(varsetofint : S, varint : x)

i zahteva da važi x = |S|. Kako se skupovne promenljive kodiraju pomoću ni-
za iskaznih promenljivih, za kodiranje ovog ograničenja može poslužiti ograničenje
lin_bool_eq. Kako zahtevamo da fiksiran broj iskaznih promenljivih iz pomenutog
niza uzme vrednost tačno, kodiranje se može vršiti analogno kodiranju ograničenja
lin_bool_eq kod koga su svi elementi niza as jednaki 1, a niz bs je pomenuti niz
iskaznih promenljivih. Pošto je x celobrojna promenljiva, treba uzeti u obzir sve
njene moguće vrednosti:

∨
i∈D(x)

x = i ∧ |S| = i

Jednakost x = i kodira se pomoću dve jedinične klauze:

px,i

¬px,i−1

dok se jednakost |S| = i kodira pomenutim postupkom svođenja na ograničenje
lin_bool_eq.

Kako rezultujuća formula nije u KNF obliku, za svođenje na KNF koriste se
pomoćne promenljive.
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Ograničenje set_le

Ovo ograničenje ima oblik:

set_le(var set of int : x, var set of int : y)

i zahteva da važi x ≤ y, pri čemu se koristi leksikografsko uređenje nad sortiranim
listama elemenata skupova. Koraci u kodiranju su sledeći:

• Određuju se l i u koji redom predstavljaju minimum, odnosno maksimum
skupa Ax ∪ Ay

• Kreira se niz xb iskaznih promenljivih sa indeksima od l do u, pri čemu je
element xb[i] tačan akko je vrednost i uključena u skup x. Analogno se kreira
niz yb.

• Uvode se pomoćne celobrojne promenljive xmin, ymin i xmax, ymax koje redom
predstavljaju minimalne, odnosno maksimalne vrednosti iz skupova x i y. Ovo
se radi analogno kodiranju ograničenja array_int_min i array_int_max.

• Kreira se niz b sa indeksima od l do u. Njegove vrednosti definišu se na sledeći
način:

– Ako je xb[i] = yb[i], tada je b[i] ⇔ b[i+1]. Na ovaj način se, idući sa leva
na desno (od manjih ka većim elementima), dokle god se skupovi po tim
elementima ne razlikuju poređenje svodi rekurzivno na sledeći element
b[i+ 1]. Kodiranju navedenog uslova odgovara sledeća formula:

(qxb[i] ∨ qyb[i]) ∧ (¬qxb[i] ∨ ¬qyb[i]) ∨ (qb[i] ∧ qb[i+1]) ∨ (¬qb[i] ∧ ¬qb[i+1])

koja se jednostavno može svesti na KNF oblik korišćenjem pomoćnih
promenljivih.

– Ako je yb[i] = 1, a xb[i] = 0, tada je b[i] = 1 akko je xmax < i. Na ovaj
način se kodira sledeća činjenica - x je leksikografski manje ili jednako y

ako je i-ti element prvi na kome se skupovi razlikuju, a svi elementi skupa
x su manji od i; u suprotnom x neće biti manje ili jednako y. Kodiranju
navedenog uslova odgovara sledeća formula:
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(qb[i] ∨ ¬pymax,i) ∧ (¬qb[i] ∨ pymax,i)

koja se jednostavno može svesti na KNF oblik.

– Slično prethodnom uslovu, ako je yb[i] = 0, a xb[i] = 1, tada je b[i] = 1

akko je ymax > i. Kodiranju navedenog uslova odgovara sledeća formula:

(qb[i] ∨ pxmax,i−1) ∧ (¬qb[i] ∨ ¬pxmax,i−1)

koja se jednostavno može svesti na KNF oblik.

– Specijalno, ako je i = u, tada se kodira uslov b[u] ⇔ (xb[u] ⇒ yb[u]),
analogno ograničenju bool_le_reif(xb[u], yb[u], b[u]).

• Nakon što je niz b definisan na navedeni način, promenljiva b[l] sadrži infor-
maciju da li važi x ≤ y. Kako bi se obezbedilo da taj uslov bude ispunjen,
dodaje se jedinična klauza qb[l].

Ograničenje set_le_reif

Ovo ograničenje ima oblik:

set_le_reif(var set of int : x, var set of int : y)

i predstavlja ekvivalencijski oblik ograničenja set_le. Kodira se analogno navedenmo
ograničenju, osim što se na kraju umesto jedinične klauze qb[l] kodira ograničenje
bool_eq(b[l], r).

Ograničenje set_lt

Ovo ograničenje ima oblik:

set_lt(var set of int : x, var set of int : y)

i zahteva da važi x < y, pri čemu se koristi leksikografsko uređenje nad sortiranim
listama elemenata skupova. Kodira se analogno ograničenju set_le, osim što se u
specijalnom slučaju kada je i = u koristi ograničenje bool_lt_reif(xb[u], yb[u], b[u]).
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Ograničenje set_lt_reif

Ovo ograničenje ima oblik:

set_lt_reif(var set of int : x, var set of int : y)

i predstavlja ekvivalencijski oblik ograničenja set_lt. Kodira se analogno navedenom
ograničenju, osim što se na kraju umesto jedinične klauze qb[l] kodira ograničenje
bool_eq(b[l], r).

Ekvivalencijski oblici ograničenja

Ograničenja: set_eq_reif, set_in_reif, set_ne_reif, set_subset_reif,
set_superset_reif, kao i njihove verzije sa implikacijom, kodiraju se ranije opisanim
postupkom kodiranja ekvivalencijskih, odnosno implikacijskih oblika ograničenja.
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3.6 Primer kodiranja FlatZinc modela

Kako bi se ilustrovao proces kodiranja konkretnog FlatZinc modela, u ovom
odeljku je predstavljen primer kodiranja sledećeg modela:

1 var 1..3: x;
2 var 1..3: y;
3 var 1..3: z;
4

5 var bool: a;
6 var bool: b;
7 var bool: c;
8

9 var set of 1..3: s;
10 var set of 1..3: t;
11 var set of 1..3: u;
12

13 constraint int_ne(x, y);
14 constraint int_plus(y, z, 4);
15 constraint int_lin_le ([2, 3], [x, z], 7);
16

17 constraint bool_or(a, b, true);
18 constraint array_bool_xor ([a, b, c]);
19 constraint bool_le(b, c);
20

21 constraint set_in(x, s);
22 constraint set_subset_reif(u, t, a);
23 constraint set_intersect(s, u, t);
24

25 solve satisfy;

Za početak, treba kodirati domene promenljivih. Eksplicitno je potrebno dodati
klauze jedino za celobrojne promenljive:

∀i ∈ {1, . . . , 3}, ¬pv,i−1 ∨ pv,i

¬pv,0
pv,3

za svako v ∈ {x, y, z}. Dalje, potrebno je kodirati jedno po jedno ograničenje.
Ograničenje int_ne(x, y) kodira se po sledećem principu:
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∧
a+b=−2

(¬h1 ∨ px,a ∨ ¬py,−b−1) (3.10)∧
a+b=−2

(¬h2 ∨ ¬px,−a−1 ∨ py,b) (3.11)

h1 ∨ h2 (3.12)

pri čemu u formuli (3.10) važi a ∈ {0, . . . , 3}, b ∈ {−4, . . . ,−1}, dok u formuli (3.11)
važi a ∈ {−4, . . . ,−1}, b ∈ {0, . . . , 3}.

Ograničenje int_plus(y, z, 4) kao treći argument ima konstantu 4. Kako je na
tom mestu očekivana celobrojna promenljiva, potrebno je kodirati celobrojnu po-
moćnu promenljivu c sa fiksiranim domenom jednakim {4}:

¬pc,3
pc,4

Nakon toga, za kodiranje samog ograničenja koriste se sledeće formule:

∧
i+j+k=−2

(¬pc,−i−1 ∨ py,j ∨ pz,k) (3.13)∧
i+j+k=−2

(pc,i ∨ ¬py,−j−1 ∨ ¬pz,−b−1) (3.14)

pri čemu u formuli (3.13) važi i ∈ {−5,−4}, j ∈ {0, . . . , 3}, k ∈ {0, . . . , 3}, dok u
formuli (3.14) važi i ∈ {3, 4}, j ∈ {−4, . . . ,−1}, k ∈ {−4, . . . ,−1}.

Za kodiranje ograničenja int_lin_le([2, 3], [x, z], 7) najpre je neophodno uvesti
pomoćnu promenljivu s čija je svrha kodiranje supstitucije s = 2 · x+ 3 · z. Granice
domena promenljive s su l(s) = 2 · l(x)+ 3 · l(z) = 5 i u(s) = 2 ·u(x)+ 3 ·u(z) = 15.
Kodiranje supstitucije ide slično kao u prethodnom ograničenju:

∧
i+j+k=−2

(¬ps,−i−1 ∨ px,j ∨ pz,k) (3.15)∧
i+j+k=−2

(ps,i ∨ ¬px,−j−1 ∨ ¬pz,−b−1) (3.16)

pri čemu u formuli (3.15) važi i ∈ {−16, . . . ,−5}, j ∈ {0, . . . , 3}, k ∈ {0, . . . , 3}, dok
u formuli (3.16) važi i ∈ {4, . . . , 15}, j ∈ {−4, . . . ,−1}, k ∈ {−4, . . . ,−1}.
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Kako bi se ograničenje kodiralo, ostaje još da se doda sledeća jedinična klauza:

ps,7

Kodiranje ograničenje bool_or(a, b, true) zahteva najpre uvođenje pomoćne pro-
menljive aorb kojom će biti predstavljena konstanta true. Ovo se postiže dodavanjem
jedinične klauze qaorb. Nakon toga, ograničenje se kodira sledećom formulom:

(¬qa ∨ qaorb) ∧ (¬qb ∨ qaorb) ∧ (qa ∨ qb ∨ ¬qaorb)

Ograničenje array_bool_xor([a, b, c]) zahteva najpre uvođenje pomoćne pro-
menljive axb radi kodiranja supstitucije axb = a ⊕ b. Pomenuta supstitucija se
kodira sledećom formulom:

(qa ∨ ¬qaxb) ∧ (qb ∨ ¬qaxb) ∧ (¬qa ∨ ¬qb ∨ qaxb)

Sada je dovoljno obezbediti da promenljive axb i c imaju različite vrednosti:

(qaxb ∨ qc) ∧ (¬qaxb ∨ ¬qc)

Ograničenje int_le(b, c) kodira se jednostavno sledećom klauzom:

¬qb ∨ qc

Ograničenje set_in(x, s) kodira se sledećim formulama:

3∧
i=1

(¬px,i−1 ∨ ¬hi) ∧ (¬px,i−1 ∨ ¬hi) ∧ (rs,i ∨ ¬hi)

h1 ∨ h2 ∨ h3

Ograničenje set_subset_reif(u, t, a) kodira se sledećim formulama:

¬qa ∨ ¬H1

3∧
i=1

(ru,i∨¬hi) ∧ (¬rt,i ∨ ¬hi)

h1∨h2 ∨ h3 ∨ ¬H1
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qa ∨ ¬H2

3∧
i=1

¬ru,i ∨ rt,i ∨ ¬H2

H1 ∨H2

Ograničenje set_intersect(s, u, t) kodira se sledećom formulom:

3∧
i=1

(rs ∨ ¬rt) ∧ (ru ∨ ¬rt) ∧ (¬rs ∨ ¬ru ∨ rt)

Sveukupno, formula dobijena kodiranjem celog modela ima 51 promenljivu i 203
klauze.
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Implementacija

U ovom poglavlju predstavljena je implementacija alata FlatToSAT 1 pisanog u
jeziku C++ čiji razvoj je centralna tema rada. Ukratko je izložen proces parsiranja
FlatZinc modela, a zatim je dat opis najbitnijih delova klase Encoder koja je ključna
za funkcionisanje alata, kao i opis toka izvršavanja programa.

Parser

Parser jezika FlatZinc generisan je pomoću alata Flex i Bison [6]. Korišćena
je gramatika data u okviru formalne specifikacije jezika FlatZinc [14]. Za svaki od
osnovnih koncepata jezika (parametri, promenljive, ograničenja, cilj modela) dekla-
risana je po jedna struktura koja čuva njegove ključne podatke. Takođe, pomoću
C++ šablona variant, deklarisan je tip unije pomenutih struktura pod nazivom
Item. Polja struktura su popunjavana koriščenjem akcija nad odgovarajućim pra-
vilima gramatike, a zatim su same strukture dodavane u niz čiji su elementi tipa
Item, pod nazivom parsing_result. Kompletan model je po završetku sačuvan u
pomenutom nizu koji je dalje prosleđen klasi Encoder.

Klasa Encoder

Glavni deo implementacije alata sadržan je u okviru klase Encoder. Javni deo
klase čine sledeći metodi:

• konstruktor klase - prima pomenuti niz parsing_result, kao i nisku koja
označava putanju na kojoj treba napraviti datoteku formula.cnf u koju će

1https://github.com/Lojovic/FlatZincToSATConverter
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biti upisana KNF formula

• encode_to_cnf - prevodi FlatZinc model u KNF formulu korišćenjem pomoć-
nih metoda opisanih u nastavku

• write_to_file - ispisuje KNF formulu u DIMACS formatu u datoteku formula.cnf

• run_minisat - pokreće SAT rešavač minisat nad formulom sačuvanom u da-
toteci formula.cnf; izlaz je sačuvan u datoteci model.out

• read_minisat_output - čita izlaz SAT rešavača iz datoteke model.out, a
zatim ispisuje poruku o zadovoljivosti (UNSAT, SAT). U slučaju zadovoljive
formule, izlaz SAT rešavača se dekodira i ispisuju se vrednosti dodeljene pro-
menljivama

U privatnom delu klase najznačajnija su sledeća polja:

• cnf_clauses - niz čiji su elementi nizovi literala. Svaki element predstavlja
klauzu, a celokupni niz predstavlja KNF formulu. Literali su predstavljeni
strukturom koja čuva tip (enum sa elementima ORDER, BOOL_VARIABLE, HELPER,

DIRECT, SET_ELEM), identifikator (ceo broj; vezuje literal za promenljivu iz
originalnog problema), pol (tipa bool; false ukoliko je literal negiran, a u
suprotnom true) i vrednost za koju je literal vezan (ceo broj; značajno kod
literala tipa ORDER, DIRECT i SET_ELEM)

• id_map - mapa koja određuje promenljivu iz originalnog problema na osnovu
identifikatora. Promenljive koje se ne nalaze u ovoj mapi ne obrađuju se pri-
likom dekodiranja rešenja SAT rešavača (pomoćne promenljive ili one za koje
je već dedukovana vrednost)

• parameter_map, variable_map, array_map - određuju o kojem se parame-
tru/promenljivoj/nizu radi na osnovu imena. Koriste se prilikom dohvatanja
argumenata ograničenja u metodu encode_constraint

• literal_to_num, num_to_literal - određuju preslikavanje između skupa li-
terala i skupa DIMACS brojeva. Koriste se u metodu write_clauses_to_file,
kao i prilikom dekodiranja izlaza SAT rešavača

Najznačajniji privatni metodi su:
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• write_clauses_to_file - ispisuje KNF formulu sačuvanu u polju cnf_clauses

u pomoćnu datoteku helper2.cnf, pritom nadovezujući se na njen sadržaj,
a zatim prazni niz cnf_clauses. Za razliku od metoda write_to_file koji
ispisuje KNF formulu koja predstvalja kompletan FlatZinc model, ovaj metod
se poziva nakon svakog kodiranja ograničenja radi uštede RAM-a. Takođe,
vodi evidenciju o broju klauza i literala, što metod write_to_file kasnije
koristi kako bi popunio datoteku helper1.cnf DIMACS zaglavljem formu-
le (datoteka formula.cnf se dobija nadovezivanjem datoteka helper1.cnf i
helper2.cnf)

• encode_variable - kodira domen promenljive koja se prosleđuje metodu, na
način opisan u prethodnom poglavlju. Popunjava mape id_map, variable_map

i array_map

• encode_parameter - popunjava mapu parameter_map

• encode_constraint - prosleđuje mu se ograničenje čije argumente dohvata
pomoću gorepomenutih mapa, a zatim poziva odgovarajuću funkciju za kodi-
ranje

• metodi oblika encode_ime_ogranicenja - kodiraju ograničenje sa odgovara-
jućim imenom na način opisan u prethodnom poglavlju

Tok izvršavanja

Tok izvršavanja programa tipično izgleda ovako:

• Program se pokreće naredbom ./flatzinc_to_sat [path/to/input.fzn],
pri čemu ukoliko se putanja do FlatZinc modela ne navede očekuje se da će
model biti unet preko standardnog ulaza

• Funkcija main poziva funkciju yyparse koja parsira FlatZinc model i popu-
njava niz parsing_result

• Kreira se instanca klase Encoder kojoj se prosleđuje parsing_result, a zatim
se poziva metod encode_to_cnf

• Metod encode_to_cnf prolazi kroz niz parsing_result, proverava tip tre-
nutnog elementa (parametar, promenljiva, ograničenje) i poziva odgovarajući
metod (encode_parameter, encode_variable, encode_constraint)
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• Nakon izvršavanja metoda encode_to_cnf, pozivaju se redom metodi write_to_file,
run_minisat i read_minisat_output. Rezultat je ispis informacija o zadovo-
ljivosti problema i eventualnoj zadovoljavajućoj dodeli vrednosti promenljiva-
ma na standardni izlaz.
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Evaluacija

Evaluacija performansi alata vršena je na računaru sa 16GB RAM-a, Intel Co-
re i5-8350U procesorom sa 4 jezgra (8 niti) i frekvencijom 1.70GHz. Za evaluaci-
ju su korišćeni problemi iz korpusa minizinc-benchmarks1, kao i pojedini problemi
obrađeni u okviru specijalnog kursa Simboličko izračunavanje2 održanog na Mate-
matičkom fakultetu tokom školske 2022/23 godine. Parametri su birani kao uzorak
skupa ponuđenih parametara u slučaju korpusa minizinc-benchmarks, odnosno pro-
cenom autora u slučaju problema sa kursa Simboličko izračunavanje. Kako su neki
od problema inicijalno bili optimizacione prirode, najpre je bilo potrebno rešiti ih
pomoću nekog od rešavača koji podržavaju probleme te vrste, a zatim dodati opti-
mizovani izraz sa dobijenom vrednošću kao parametar novog modela koji će za cilj
imati zadovoljenje. Poređenje je vršeno sa rešavačem chuffed zasnovanom na lenjom
generisanju klauza, a rezultati su prezentovani u tabelama 5.1−5.17 datim u nastav-
ku. Simbol / označava da je rešavaču ponestalo memorije, dok simbol + označava
da je izvršavanje prekinuto nakon naznačenog vremenskog perioda (najšešće posle
proizvoljno izabranih 3 sata i 30 minuta označenih sa 3h30m+).

1https://github.com/MiniZinc/minizinc-benchmarks
2https://github.com/milanbankovic/symbolic_computing/tree/main/programiranje_

ogranicenja/primeri
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Tabela 5.1: queens

n FlatToSAT Chuffed
4 0m0.021s 0m0.079s
8 0m0.106s 0m0.073s
20 0m4.041s 0m0.332s
50 4m37.031s 3h30m+
100 / 3h30m+
200 / 3h30m+
400 / 3h30m+

Tabela 5.2: knights

n, m FlatToSAT Chuffed
8, 4 22m19.342s 0m0.080s
8, 10 38m51.031s 0m0.144s
8, 12 40m9.736s 0m0.120s
8, 14 45m5.703s 0m0.139s

Tabela 5.3: latin-squares

n FlatToSAT Chuffed
3 0.057s 0m0.087s
7 0.661s 0m0.103s
10 3.589s 0m0.109s
12 9.173s 0m0.145s
15 31.587s 0m0.256s
20 2m44.736s 0m0.637s
25 10m36.418s 0m2.85s

Tabela 5.4: schur_numbers

n, c FlatToSAT Chuffed
5, 3 0m0.077s 0m0.071s
7, 3 0m0.083s 0m0.087s
10, 3 0m0.129s 0m0.088s
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Tabela 5.5: kakuro
Type FlatToSAT Chuffed

6x6, easy 0m0.210s 0m0.075s
6x6, hard 0m0.228s 0m0.093s
6x6, super 0m0.236s 0m0.087s
8x8, easy 0m0.263s 0m0.093s
8x8, hard 0m0.390s 0m0.078s
8x8, super 0m0.489s 0m0.080s

Tabela 5.6: golomb

n, k FlatToSAT Chuffed
6, 4 0m0.100s 0m0.085s
7, 4 0m0.132s 0m0.089s
17, 6 0m2.998s 0m0.095s
25, 7 0m20.071s 0m0.076s
34, 8 1m51.700s 0m0.577s
44, 9 8m49.740s 0m3.378s

Tabela 5.7: knapsack

n, C, value FlatToSAT Chuffed
6, 10, 35 0m0.046s 0m0.062s
5, 20, 18 0m0.157s 0m0.075s
3, 50, 220 0m0.375s 0m0.089s
8, 15, 165 0m0.436s 0m0.073s
15, 35, 235 0m2.546s 0m0.107s
20, 50, 101 0m3.497s 0m0.073s

Tabela 5.8: allinterval
Instanca FlatToSAT Chuffed

easy1 0m0.674s 0m0.088s
easy2 0m1.695s 0m0.168s

medium1 0m2.486s 0m0.450s
medium2 0m4.730s 0m1.655s

hard1 0m7.980s 0m11.635s
hard2 0m13.568s 0m4.294s
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Tabela 5.9: langford

n FlatToSAT Chuffed
3 0m0.158s 0m0.082s
4 0m0.387s 0m0.078s
5 0m0.916s 0m0.084s
7 0m3.516s 0m0.111s
8 0m6.149s 0m0.116s
11 0m24.189s 0m0.187s

Tabela 5.10: golfers

m, n FlatToSAT Chuffed
2, 2 0m0.946s 0m0.105s
2, 3 1m2.802s 0m0.107s
4, 3 / 0m17.674s

Tabela 5.11: fillomino
Dimenzije FlatToSAT Chuffed

3x3 0m0.844s 0m0.085s
4x4 0m5.494s 0m0.116s
4x4 0m7.638s 0m0.353s
5x5 0m17.064s 0m0.124s
5x5 0m19.525s 0m0.132s
5x5 0m19.070s 0m0.183s

Tabela 5.12: nonogram

Instanca FlatToSAT Chuffed
non_fast_1 12m25.945s 0m4.152s
non_fast_2 10m44.750s 0m4.875s
non_med_1 9m11.369s 0m12.857s
non_med_2 25m18.027s 1m2.659s
non_awful_1 13m15.544s 46m49.961s
non_awful_2 9m56.723s 0m16.344s

52



GLAVA 5. EVALUACIJA

Tabela 5.13: nurse scheduling problem (nsp)

Instanca FlatToSAT Chuffed
14_1 0m2.187s 0m6.217s
14_2 0m1.938s 3h26m22s
14_3 0m1.631s 3h30m+
28_1 0m3.300s 2m7.000s
28_2 0m3.253s 57m38.000s
28_3 0m3.463s 2h29m3s

Tabela 5.14: grid-coloring

n, m FlatToSAT Chuffed
4, 8 0m0.543s 0m0.616s
5, 6 0m0.456s 0m0.124s
7, 8 0m1.318s 0m5.821s

10, 10 0m24.432s 10h+
12, 13 10h+ 10h+

Tabela 5.15: steiner-triples

n FlatToSAT Chuffed
3 0m0.014s 0m0.092s
7 0m0.632s 0m0.140s
9 0m2.091s 0m0.515s
13 0m15.246s 8m20.000s
15 1m25.902s 3h30m+
19 22m7.875s 3h30m+

Tabela 5.16: equation solving (EQ)

Instanca FlatToSAT Chuffed
eq20 / 0m0.095s

Tabela 5.17: slow_convergence

n FlatToSAT Chuffed
100 / 0m0.562s

Može se primetiti da je alat uspeo da reši većinu problema na kojima je vršena
evaluacija. Takođe, kod većine problema, može se opaziti prirodan trend porasta
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vremena izvršavanja sa povećanjem vrednosti parametara. Za nekoliko problema
kod kojih to nije slučaj, parametri su kalibrisani tako da se težina instance određuje
prema standardnim CSP rešavačima, što ne oslikava težinu rešavanja za pristup
koji koristi alat FlatToSAT. Kod nekoliko problema (queens, nsp, grid-coloring,
steiner-triples), alat je uspeo da reši instance koje chuffed nije uspeo da reši u
posmatranom vremenskom periodu. Postoji nekoliko problema kod kojih je alat
imao problem sa memorijom, što se može pripisati veličini KNF formule koja se
prosleđuje SAT rešavaču. Takvi problemi su najčešće imali promenljive sa velikim
domenima (veličina ≥ 1000) ili su prilikom kodiranja linearnih ograničenja nastajale
pomoćne promenljive sa velikim domenima. Treba naglasiti da su dobijena rešenja
proverena, pri čemu nisu uočene greške, što povećava sigurnost u ispravnost alata
(iako ona nije formalno dokazana, pa je moguće da greške postoje).
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Zaključak

U ovom radu dat je detaljan opis postupka svođenja FlatZinc modela na KNF
formulu. Najpre su uvedeni određeni pomoćni koncepti (poput kodiranja primitiv-
nih zbirova i razlika, kao i korišćenja pomoćnih promenljivih), a zatim je opisan
pristup kodiranju domena promenljivih različitih tipova, kao i pojedinačnih Flat-
Zinc ograničenja. Predstavljena je implementacija alata napisanog u jeziku C++
koji korišćenjem pomenutog pristupa prevodi FlatZinc model u KNF formulu u
DIMACS formatu, dok za rešavanje dobijene formule koristi minisat SAT rešavač.
Evaluacija alata vršena je poređenjem vremena izvršavanja sa chuffed CSP reša-
vačem na 17 problema. Pokazalo se da alat uspeva da nađe rešenja čak i za teške
instance većine problema, ali kod određenog broja problema nailazi na prepreku u
vidu memorijskih ograničenja.

Uprkos dobrim rezultatima evaluacije, alat je razvijen sa primarnim ciljem funk-
cionalnosti, a ne efikasnosti. Samim tim, jedan mogući pravac unapređenja uklju-
čivao bi optimizaciju postojeće implementacije, korišćenje drugih načina kodiranja
pojedinačnih ograničenja, kao i drugih šema kodiranja domena promenljivih. Drugi
mogući smer istraživanja mogao bi da podrazumeva formalizaciju postupka kodira-
nja pojedinačnih ograničenja, kako bi se stekla sigurnost u ispravnost alata. Najzad,
u eri munjevitog napretka različitih tehnika mašinskog učenja, nameće se moguć-
nost integracije pomenutih tehnika sa alatom, u cilju odabira optimalnog načina
kodiranja određenog problema.
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