UNIVERZITET U BEOGRADU
MATEMATICKI FAKULTET

Dijana N. Alanovi¢

KOMBINOVANJE EGZAKTNIH
ALGORITAMA T ALGORITAMA LOKALNE
PRETRAGE U SAT I SMT RESAVACIMA

master rad

Beograd, 2025.

Mentor:

doc. dr Milan BANKOVIC, docent

Univerzitet u Beogradu, Matematicki fakultet

Clanovi komisije:

prof. dr Predrag JANICIC, redovni profesor

Univerzitet u Beogradu, Matematicki fakultet

prof. dr Vesna MARINKOVIC, vanredni profesor

Univerzitet u Beogradu, Matematicki fakultet

Datum odbrane:

Naslov master rada: Kombinovanje egzaktnih algoritama i algoritama lokalne

pretrage u SAT i SMT resavac¢ima

Rezime: U ovom radu se razmatraju moguénosti kombinovanja egzaktnih algorita-
ma i algoritama lokalne pretrage u okviru SAT i SMT resavaca. Jedna takva tehnika
predstavljena je u radu Caija i Zanga na SAT konferenciji 2021. godine. Pored de-
taljnog prikaza ove tehnike u slucaju SAT reSavaca, razmatrana je i adaptacija ove
tehnike u kontekstu SMT resSavaca. Tehnika je implementirana u okviru SMT resa-
vaca ArgoSMT i otvorenog je koda. Evaluacija je data za vise konfiguracija resavaca

radi pronalazenja pogodne postavke promenljivih.

Kljuc¢ne reci: SAT resava¢, SMT resavac, algoritam lokalne pretrage, CDCL algo-

titam

Sadrzaj

Uvod
Osnove

Egzaktni algoritmi
3.1 CDCL algoritam
3.2 Algoritam CDCL(T)

4 SAT reSavaci zasnovani na lokalnoj pretrazi
4.1 GSAT . . .
4.2 WalkSAT
5 Ugradnja lokalne pretrage u CDCL algoritam
5.1 Opis postupka ugradnje lokalne pretrage u CDCL algoritam
5.2 Uticaj lokalne pretrage na heuristike grananja CDCL algoritma
6 Ugradnja lokalne pretrage u CDCL(T) algoritam
7 Implementacija i evaluacija
7.1 Implementacija
7.2 Evaluacija
8 Zakljucak
Bibliografija

14
14
15

17
17
20

22

27
27
31

35

36

Glava 1

Uvod

Problem iskazne zadovoljivosti (engl. Boolean satisfiability problem), u nastavku
SAT, je fundamentalan problem u rac¢unarstvu, a algoritmi za njegovo reSavanje su
zabelezili izuzetan napredak tokom prethodnih decenija. Problem podrazumeva ispi-
tivanje da li za datu iskaznu formulu postoje vrednosti iskaznih promenljivih za koje
je ta formula tac¢na. Formula je podrazumevano zadata u konjuktivnoj normalnoj

formi (KNF'). Na primer formula:
(x1 v x2) A (—x2) A (—x1 V T3)

je tatna ako su promenljive z; i x3 taCne, a promenljiva xy netacna. SAT je prvi
problem za koji je dokazano da je NP-kompletan (Kuk-Levinova teorema [4, 7]). To
znaci da su svi problemi u klasi slozenosti NP najvise jednako teski za resavanje kao
i SAT.

Alati koji implementiraju procedure za reSavanje SAT problema nazivaju se
SAT resavac¢i. Moderni SAT reSavaci su po pravilu zasnovani na CDCL algorit-
mu (engl. Conflict-Driven Clause Learning) |6]. Pored teorijskog znacaja, njihova
primena je posebno znacajna u verifikaciji hardvera i softvera, gde omogucavaju
otkrivanje gresaka u dizajnu digitalnih kola, procesora i kompajlera, ¢ime se spreca-
vaju skupi propusti u industrijskoj proizvodnji. Pored toga, SAT resavaci se koriste
u problemima planiranja i rasporedivanja, kao $to su kreiranje skolskih rasporeda,
optimizacija proizvodnih procesa ili rasporedivanje avionskih letova. Zahvaljujuéi
svojoj snazi, SAT reSavaci nalaze primenu i u generisanju test sluc¢ajeva, dijagno-
stici sistema, pa ¢ak i u reSavanju logickih slagalica i igara (npr. sudoku), ¢ime

se demonstrira njihova Siroka primenljivost i fleksibilnost. Neki od poznatijih SAT

GLAVA 1. UVOD

resavaca su MiniSAT!, Glucose?, Lingeling®, CaDiCalL?, itd.

SMT problem (engl. Satisfiability modulo theories) je problem ispitivanja da li
je data formula logike prvog reda zadovoljiva u odnosu na datu teoriju T, odnosno
da li postoji model teorije T u kojoj je data formula tac¢na. Teorije koje se obi¢no
razmatraju u praksi ukljucuju realnu i celobrojnu aritmetiku, teoriju nizova, listi,
bitvektora, stringova, induktivnih tipova podataka, i sl. SMT resavaci su alati koji
implementiraju procedure za resavanje SMT problema. NajceS¢e su zasnovani na
kombinaciji SAT reSavaca zasnovanog na CDCL algoritmu i specifi¢cnih procedu-
ra odlu¢ivanja za datu teoriju (jedna ovakva arhitektura je poznata pod nazivom
CDCL(T) [6]). Imaju Siroku primenuu u verifikaciji softverskih sistema, naro¢ito
u domenima gde je kriticna bezbednost, poput avionike, automobilskih sistema i
medicinskih uredaja. SMT resavaci omoguéavaju proveru svojstava koda, detekciju
potencijalnih gresaka kao Sto su prekoracenje bafera ili deljenje nulom, ali i formalnu
verifikaciju sigurnosnih protokola i kriptografskih algoritama. Osim toga, koriste se
i u optimizacionim problemima u industriji, gde kombinacija logic¢kih i numerickih
uslova omogucava efikasno rasporedivanje resursa i planiranje proizvodnje. Zahva-
ljujuci toj kombinaciji logike i teorija, SMT reSavaci su postali neizostavan alat u
savremenom softverskom inzenjerstvu i formalnim metodama.

Algoritmi lokalne pretrage (engl. local search) su se pokazali veoma efikasnim u
reSavanju mnogih slozenih problema optimizacije u razli¢itim domenima. Oni itera-
tivno poboljsavaju tekuce resenje tako Sto u njega unose lokalne izmene i prihvataju
promene samo ako dovode do boljeg resenja. Algoritmi lokalne pretrage se uspesno
koriste i za reSavanje SAT problema. Za razliku od egzaktnih algoritama (poput
CDCL algoritma), algoritmi lokalne pretrege su nekompletni, tj. ne garantuju da ¢e
reSenje biti pronadeno, ali u praksi ¢esto brze dolaze do zadovoljavajuce valuacije
od egzaktnih algoritama. Takode, algoritmi lokalne pretrage nisu u stanju da utvrde
nezadovoljivost formule. Neki od znacajnijih algoritama lokalne pretrage za SAT
problem su GSAT i WalkSAT [2].

U radu Caija i Zanga [10] predloZen je novi algoritam za reSavanje SAT problema
koji kombinuje CDCL algoritam sa algoritmima lokalne pretrage. CDCL algoritam
je potpuna metoda pretrazivanja koja funkcioniSe tako $to obilazi stablo pretrage

i u¢i nove klauze iz konflikata na koje naide. Lokalna pretraga je, s druge strane,

thttp://minisat.se/
https://www.labri.fr/perso/Isimon /research /glucose/
3https://fmv.jku.at/lingeling/

“https://fmv.jku.at /cadical /

GLAVA 1. UVOD

nepotpuna metoda pretrazivanja koja iterativno poboljsava dato resenje unosenjem
malih izmena u njega. Predlozeni algoritam iz rada [10] kombinuje prednosti obe
metode tako sto koristi CDCL algoritam kao glavni algoritam pretrage, a lokalnu
pretragu koristi za dalje poboljsanje valuacije koju je pronasao CDCL algoritam, u
cilju brzeg pronalazenja zadovoljavajuce valuacije.

U sprovedenim eksperimentima autori pokazuju da prosirenje CDCL algoritma
tehnikama lokalne pretrage dovodi do znacajnih poboljsanja u performansama. Na
skupu instanci sa SAT takmicenja 2020, modifikovana verzija reSavaca Glucose®,
refila je 62 dodatne instance (oko 15,5% vige), dok je Maple-DL® resio 67 dodatnih
instanci (oko 16,8% vise) u poredenju sa originalnim verzijama. I reSava¢ Kissat”
belezi dobitak od 10 dodatnih instanci (oko 2,5%). Poboljsanja su vidljiva i po vre-
menskoj efikasnosti, merenoj PAR2 metrikom: za Maple-DL prose¢no penalizovano
vreme resavanja smanjeno je sa 5835s na 4171s, za glucose sa 6494s na 4977.9s, dok
je za Kissat smanjeno sa 4048s na 3896s.

U ovom radu dat je detaljni opis pomenute tehnike ugradnje lokalne pretrage u
CDCL algoritam, predstavljene u radu [10]. Glavni doprinos ovog rada je adaptacija
ove tehnike u kontekstu SMT resavaca. Tehnika je implementirana u okviru SMT
resavaca ArgoSMT [3] i otvorenog je koda. Rad takode sadrzi i evaluaciju dobijene
implementacije na korpusima instanci iz SMT-LIB biblioteke [1].

Nastavak ovog rada je organizovan na slede¢i nacin. U glavi 2 uvedene su osnov-
ne definicije, pojmovi i oznake neophodne za razumevanje pomenutih tehnika. U
glavi 3 bi¢e dat opis egzaktnih algoritama za reSavanje SAT problema (CDCL al-
goritam) i SMT problema (CDCL(T) algoritam). U glavi 4 se nalazi opis osnovnih
algoritma lokalne pretrage za resavanje SAT problema, WalkSAT i njegova preteca
GSAT. U poglavlju 5 detaljno je predstavljena tehnika ugradnje lokalne pretrage u
CDCL algoritam, dok se u poglavlju 6 razmatra njena primena pri ugradnji lokalne
pretrage u CDCL(T) algoritam, po ugledu na opis iz rada [10]. U glavi 7 je dat opis
implementacije ove tehnike u okviru SMT resavaca ArgoSMT i evaluacija na SMT
instancama, kao i diskusija dobijenih rezultata. Na kraju, u glavi 8, kao zakljucak,

dat je osvrt na postignute rezultate u ovom radu.

Shttps://www.labri.fr /perso/lsimon /research /glucose/
Shttps://maplesat.github.io /solvers.html
"https://fmv.jku.at/kissat/

Glava 2

Osnove

U ovom delu rada bi¢e date osnovne definicije, pojmovi i oznake potrebne za

razumevanje ostatka rada.

SAT problem

Neka je dat prebrojivi skup iskaznih promenljivih. Literal (engl. literal) je ili
promenljiva v ili njena negacija —v. Suprotan literal literalu | oznacava se sa .
Ukoliko je literal [promenljiva v, njemu suprotan literal je negacija promenljive v,
odnosno —wv, a ukoliko je literal [negacija promenljive v, njemu suprotan literal je
upravo v. Klauza (engl. clause) predstavlja disjunkciju literala. KNF formulu ¢ini
konjukcija klauza i bi¢e oznacavana sa F'.

Pod valuacijom podrazumevamo pridruzivanje istinitosnih vrednosti (tacno, ne-
tacno) iskaznim slovima. Ukoliko je promenljiva v ta¢na u datoj valuaciji, tada je
—v netacno u toj valuaciji i obrnuto. Klauza je ta¢na u datoj valuaciji ako je u njoj
tacan bar jedan njen literal. KNF formula je ta¢na u datoj valuaciji ako su sve nje-
ne klauze tacne u toj valuaciji. KNF formula F je zadovoljiva ako postoji bar jedna
valuacija u kojoj je F ta¢na, a u suprotnom je nezadovoljiva. Problem ispitivanja
zadovoljivosti KNF formule naziva se SAT problem. Ovaj problem je NP kompletan
[5]. Alati koji implementiraju procedure odlu¢ivanja za SAT problem nazivaju se

SAT resavadi.

SMT problem

Signatura (ili jezik) X se sastoji iz skupa funkcijskih i predikatskih simbola da-

tih arnosti. Bazni term je ili funkcijski simbol arnosti 0 (konstanta) ili funkecijski

GLAVA 2. OSNOVE

simbol arnosti n > 0 primenjen na n baznih termova. Bazni atom prvog reda je ili
predikatski simbol arnosti 0, ili predikatski simbol arnosti n > 0 primenjen na n
baznih termova. Literal prvog reda je ili atom prvog reda, ili njegova negacija. Kla-
uza prvog reda je disjunkcija literala prvog reda. Bazna KNF formula prvog reda je
konjunkcija baznih klauza prvog reda. Struktura M se sastoji iz nepraznog domena
D i mapiranja koje funkcijskim simbolima iz ¥ pridruzuje funkcije odgovarajuce
arnosti nad D, dok predikatskim simbolima pridruzuje relacije odgovarajuce arnosti
nad D. Struktura M indukuje interpretaciju termova i atoma nad ¥ na uobica-
jen nacin, pri ¢emu se termovi interpretiraju kao elementi skupa D, dok se atomi
interpretiraju kao istinitosne vrednosti (ta¢no, neta¢no). Sada se istinitosne vred-
nosti literala, klauze i KNF formule u strukturi M definisu analogno kao u sluc¢aju
iskazne logike. Pod teorijom prvog reda 7' nad Y podrazumevamo skup struktura
nad Y koje nazivamo modelima teorije 7. Formula F' je zadovoljiva u teoriji 7" (ili
T-zadovoljiva) ako postoji model M teorije T u kom je F' ta¢na, u suprotnom je
F' T-nezadovoljiva. Problem ispitivanja zadovoljivosti formule u teoriji 7" nazivamo
SMT problem za teoriju 7. Alati koji implementiraju procedure za reSavanje SMT

problema nazivaju se SMT resavaci.

Glava 3
Egzaktni algoritmi

U ovoj glavi ¢e biti prikazani egzaktni algoritmi koji se dominantno koriste u
SAT i SMT resavacima. Algoritam zasnovan na ucenju klauza vodenom konfliktima
(engl. conflict driven clause learning (CDCL)) predstavlja napredan algoritam na
kome je zasnovana vecéina savremenih SAT resavaca. Ovaj algoritam predstavlja
unapredenje Davis-Putnam-Logemann-Loveland (DPLL) algoritma i bi¢e detaljno
razmotren u poglavlju 3.1.

S druge strane, moderni SMT resavaci su zasnovani na CDCL(T) algoritmu, koji
kombinuje SAT resava¢ zasnovan na CDCL algoritmu sa procedurama odlucivanja
za teorije prvog reda poput aritmetike, bit vektora, i sl. CDCL(T) algoritam ¢e

detaljno biti razmotren u glavi 3.2.

3.1 CDCL algoritam

U ovom poglavlju razmatra se CDCL algoritam koji predstavlja najcesée kori-
S¢en egzaktni algoritam za resavanje SAT problema. Glavni deo algoritma pokusava
da inkrementalno izgradi zadovoljavaju¢u valuaciju mehanizmom odluc¢ivanja i pro-
pagacija, uz detekciju konflikata (tj. klauza koje su netacne u tekucoj parcijalnoj
valuaciji). U sluc¢aju da se pojavi konflikt, tada se vrsi analiza konflikata, ¢iji je re-
zultat ucenje klauze koja je stvarni uzrok konflikta i nehronologko vra¢anje unazad
na osnovu naucene klauze. Navedene komponete algoritma detaljnije su opisane u
narednim odeljcima.

Oznacimo sa « parcijalnu valuaciju koja se formira u okviru SAT resavaca. Literal
[je tacan u valuaciji a, sa oznakom « = [, ukoliko je element valuacije «, a netacan u

valuaciji «, sa oznakom « = —I, ukoliko je njemu suprotan literal element valuacije

GLAVA 3. EGZAKTNI ALGORITMI

a. Ukoliko literal [nije ni tacan ni netacan u valuaciji a , kazemo da je nedefinisan
u valuaciji «, sa oznakom « F [, —l. Klauza C je tacna u valuaciji «, sa oznakom
a = C, ukoliko postoji bar jedan literal [€ C' tako da « = [, a netaéna u valuaciji
a, sa oznakom a = —C', ukoliko za svaki literal [€ C' vazi a |= —l. Netacne klauze
u valuaciji Cesto se u praksi nazivaju kon fliktnim klauzama. Formula F je tacna
u valuaciji «, sa oznakom « |= F, ukoliko za svaku klauzu C' € F vazi o = C, a
netaéna u valuaciji « , sa oznakom « = —F, ukoliko postoji C' € F takva da vazi
a = —C'. Za formulu i klauzu koje nisu ni tacne ni neta¢ne u valuaciji a kazemo da
su nedefinisane u «.

Parcijalna valuacija ¢e u okviru SAT reSavaca biti predstavljena kao stek na
kome se nalaze literali koje smatramo ta¢nim u tekucoj parcijalnoj valuaciji. Ovaj
stek se u literaturi obi¢no naziva trag (engl. trail). Trag je izdeljen na nivoe odlu-
dwanja sa pocetnom numeracijom 0, pri ¢emu poslednji nivo nazivamo tekuci nivo
odlucivanga. Literali odlucivanja su literali kojima pocinju nivoi odluivanja (sem
nultog nivoa) i koji se nalaze na steku kao rezultat proizvoljne odluke algoritma
(tj. predstavljaju tacke grananja). Preostali literali na svakom od nivoa odlu¢ivanja
se nazivaju izvedens literali, a nastali su kao posledica prethodno donetih odluka,
mehanizmom propagacije. Nivoi odluc¢ivanja su uvedeni da bi se omogucilo vrac¢anje
unazad, a literali odluc¢ivanja su tacke u koje algoritam moze da se vrati i izabere
alternativni put pretrage.

Struktura CDCL algoritma data je u Algoritmu 1.

GLAVA 3. EGZAKTNI ALGORITMI

Algoritam 1 CDCL algoritam, CDCL(F, «)
1: dl < 0;
2: if UnitPropagation(F,a) = CONFLICT then
3: return UNSAT
4: end if
5. while 3 nede finisana promenljiva v u tragu o do
6: x <« PickBranchVar(F, a);
7: v «— PickBranchPolarity(F, x,a);
8
9

dl — dl +1;

: a.push(z,v);
10: if UnitPropagation(F,a) = CONFLICT then
11: bl — Conflict AnaysisAndLearning(F, a);
12: if bl < 0 then
13: return UNSAT;
14: else
15: Backtrack(F, o, bl);
16: dl < bl;
17: end if
18: end if

19: end while
20: return SAT

U liniji 2, odnosno prvi if vrsi iscrpnu jedini¢énu propagaciju (o kojoj ¢e biti reci
u narednom odeljku), na nultom nivou odluc¢ivanja. Ako dode do konflikta odmah
se prijavljuje UNSAT, tj. ne postoji zadovoljavajuca valuacija za datu ulaznu for-
mulu. Zatim se ulazi u while petlju u kojoj se ostaje sve dok sve promenljive ne
dobiju vrednost. Ukoliko se to postigne, a da pritom ne dode do konflikta, algoritam
vraca SAT nakon petlje. Pomoc¢u funkcija Pick BranchVar i PickBranchPolarity
se biraju promenljiva i njen polaritet koje se dodaju na trag u liniji 9, dok se u
liniji 8 povecava tekuci nivo odluc¢ivanja. Ovim povecanjem se postize da dodati
literal zapravo bude literal odlu¢ivanja. Nakon postavljanja literala odlu¢ivanja ide
se u naredni cikus jedini¢ne propagacije, a ako se tom prilikom desi konflikt, on se
analizira u liniji 11 pozivom funkcije Con flict AnaysisAndLearning koja odreduje
nivo odluc¢ivanja na kome se nalazi pravi uzrok konflikta, a vracanjem na ovaj ni-
vo izbegava se nepotrebno pretrazivanje neperspektivnih grana prostora pretrage.
Takode, analiza konflikta kao rezultat ima klauzu povratnog skoka koja objasnjava
prirodu konflikta i koja je posledica klauza formule F, a koja se dodaje u skup klau-
za, ¢ime se sprecavaju sli¢ni konflikti u buduénosti. Ako se konflikt ne prijavi ide se

na narednu iteraciju while petlje i postupak izbora literala odluc¢ivanja se ponavlja.

GLAVA 3. EGZAKTNI ALGORITMI

Jedini¢na propagacija

Jedini¢na propagacija (engl. Unit Propagation) je mehanizam koji omogucava
efikasno smanjenje prostora pretrage tako Sto identifikuje literale koji moraju bi-
ti tacni i dodaje ih na trag. Algoritam analizira skup klauza i identifikuje klauze
koje sadrze samo jedan nedefinisani literal, dok su ostali literali neta¢ni u tekucoj
parcijalnoj valuaciji. Ove klauze nazivamo jedini¢nim klauzama. Za svaku jedini¢nu
klauzu, nedefinisani literal dobija istinitosnu vrednost ,tacno”, kako bi klauza bila
zadovoljena. Ova dodela se propagira kroz formulu.

Dok se istinitosne vrednosti propagiraju, algoritam vrsi dedukciju identifikujuéi
dodatne jedini¢ne klauze koje proisticu iz dodela napravljenih u prethodnim koraci-
ma. Na taj nacin se uspostavlja lanac dedukcija koji suzava prostor mogucih dodela
istinitosnih vrednosti i time smanjuje prostor pretrage.

Ako se javi konflikt tokom procesa jedini¢ne propagacije, tj. ako neka od klauza
postane netacna u tekucoj parcijalnoj valuaciji, algoritam prelazi u fazu analize
konflikta.

Algoritam koji se tipi¢no koristi za pronalaZenje jedini¢nih klauza je shema dva
posmatrana literala (engl. two watched literals scheme). U svakoj klauzi se biraju
dva literala koja nisu neta¢na u trenutnoj valuaciji. Za svaki literal se odrzava lista
svih klauza u kojima je on posmatrani literal. Kada neki literal postane netacan u
tekucoj parcijalnoj valuaciji obilazi se njegova lista posmatranih klauza i za svaku
klauzu trazi se alternativni posmatrani literal. Ako se nade novi posmatrani literal
ta klauza se dodaje na njegovu listu posmatranih klauza. U suprotnom postoje
dve mogucnosti: da je drugi posmatrani literal takode netacan u tekucoj valuaciji
(prijavljuje se konflikt) ili da je drugi posmatrani literal nedefinisan (taj literal ¢e

biti propagiran).

Proces donosenja odluka

Jedan od vaznih elemenata CDCL algoritma je proces donoSenja odluka, gde se
vr§i izbor promenljive odlu¢ivanja i njenog polariteta (funkcije pick BranchVar i
pick BranchPolarity u algoritmu 1).

Algoritam koristi heuristiku kako bi izabrao promenljivu kojoj ¢e se dodeliti
vrednost. Heuristike donoSenja odluka mogu se zasnivati na razli¢itim kriterijumi-
ma, kao $to su najvise pojavljivanja u klauzama, najmanje pojavljivanja ili neka

druga metrika koja odgovara karakteristikama problema. Jedna od ¢esto koriséenih

GLAVA 3. EGZAKTNI ALGORITMI

heuristika u CDCL algoritmu je VSIDS (engl. Variable State Independent Decaying
Sum) heuristika [9]. Ona dodeljuje bodove promenljivama na osnovu njihovog uce-
S¢a u konfliktima tokom pretrage. Promenljive koje su ucestvovale u veéem broju
konflikata u skorije vreme dobijaju vise bodova i prioritetno se razmatraju pri do-
nosenju odluka. Ova heuristika omogucava algoritmu da se fokusira na promenljive
koje su verovatno klju¢ne za konflikte i da izbegne beskorisno pretrazivanje.

Nakon izbora promenljive, algoritam dodeljuje polaritet promenljivoj, a jedna od
najcesc¢ih strategija izbora je strategija sacuvanog polariteta, kod koje se bira onaj

polaritet koju je promenljiva poslednji put imala u prethodnom toku pretrage.

Analiza konflikata, ucenje klauza i povratni skokovi

Analiza konflikata (engl. conflict analysis) je komponenta CDCL algoritma ko-
ja se koristi za identifikovanje uzroka konflikata i ucenje iz njih. Kada se tokom
jedini¢ne propagacije otkrije konflikt, algoritam postupkom rezolucije, polazeé¢i od
konfliktne klauze, konstruise klauzu koja objasnjava pravi uzrok konflikta. U pita-
nju je iterativni postupak tokom koga se polazna konfliktna klauza transformise na
sledeci nacin: u svakom koraku, identifikuje se izvedeni literal iz trenutne konfliktne
klauze koji je poslednji ponisSten na tragu « i eliminiSe se iz konfliktne klauze pri-
menom rezolucije sa klauzom iz koje je taj literal dobijen jedini¢nom propagacijom
(ovu klauzu nazivamo objasnjenje propagiranog literala). Ovaj postupak se ponavlja
do dostizanja tacke jednoznaéne implikacije (engl. unique implication point (UIP)),
u kojoj vazi da su svi literali iz trenutne konfliktne klauze osim jednog ponisteni na
tragu a na nivou manjem ili jednakom nekom m, dok je samo jedan literal ponisten
na nekom nivou veéem od m (tipi¢no na teku¢em nivou odlucivanja).

Klauza dobijena na kraju opisanog postupka analize konflikta se naziva klauza
povratnog skoka. Ova klauza se koristi za odredivanje nivoa povratnog skoka, a ta-
kode se dodaje u tekuéi skup klauza, kako bi se izbegli sli¢ni konflikti u buduénosti.
Ovaj proces dodavanja klauze povratnog skoka se naziva ucenje klauza.

Povratni skok (engl. Backjump) je karakteristika CDCL algoritma koja omo-
gucava izbegavanje neperspektivnih grana prostora pretrage. Na osnovu konfliktne
klauze, algoritam identifikuje nivo odluc¢ivanja na tragu na kome se nalazi stvarni
uzrok konflikta. Ovaj nivo se naziva nivo povratnog skoka. U pitanju je minimalni
nivo na kome je klauza povratnog skoka jedini¢na klauza. Algoritam se vrac¢a na ovaj

nivo i na osnovu klauze povratnog skoka vrsi propagaciju odgovarajuceg literala.

10

GLAVA 3. EGZAKTNI ALGORITMI

3.2 Algoritam CDCL(T)

SMT resava¢ zasnovan na CDCL(T) arhitekturi se sastoji iz SAT reSavaca za-
snovanog na CDCL algoritmu i teorijskog resavaca koji implementira proceduru
odlu¢ivanja za ispitivanje zadovoljivosti konjunkcije literala u teoriji T. Struktu-
ra CDCL(T) algoritma prikazana je u algoritmu 2, a dodatne metode teorijskog

reSavaca koje se pozivaju iz SAT reSavaca date su u nastavku:

e newlLevel(): poziva se svaki put kada se na tragu uspostavi novi nivo odluéi-
vanja. Ovo je neophodno, kako bi teorijski resava¢ mogao da zapamti svoje
interno stanje na kraju svakog nivoa odluc¢ivanja. Zapamdceno stanje se kasnije

moze rekonstruisati, u slucaju vracanja unazad.

e assertLiteral(l): poziva se svaki put kada se na trag postavi novi literal, kako

bi teorijski resava¢ bio informisan o promeni stanja parcijalne valuacije.

e backjump(m): poziva se pri svakom povratnom skoku. Ovim se teorijski resavac
informiSe o promeni stanja parcijalne valuacije i ujedno se nalaze teorijskom

reSavacu da se vrati na stanje u kome je bio na kraju nivoa m.

e checkConflict(R): nalaze teorijskom reSavacu da ispita da li u tekucoj parci-
jalnoj valuaciji postoji konflikt u teoriji. Ukoliko je odgovor potvrdan, teorij-
ski resava¢ vra¢a podskup literala R sa traga a takav da je R =1 L. Ovaj
skup nazivamo objasnjenje teorijskog konflikta i njegovom negacijom dobija
se konfliktna klauza od koje zapocinje analiza konflikta. Ova procedura se
obi¢no poziva nakon zavrsenog ciklusa jedini¢ne propagacije, pod pretpostav-
kom da isti nije proizveo konflikt. U algoritmu se poziva u okviru funkcije

TheoryPropagation - linija 6.

e checkTheoryPropagation(L): ovom procedurom se nalaze teorijskom resavacu
da proveri da li postoje literali nedefinisani u tekucoj parcijalnoj valuaciji,
a koji u teoriji T slede iz literala koji se nalaze na tragu. Ukoliko postoje,
skup L svih takvih literala se vra¢a SAT resavacu koji ih postavlja na trag na
tekucem nivou odlucivanja. Opisani postupak se naziva teorijska propagacija i
predstavlja dodatni mehanizam zakljuc¢ivanja, analogan mehanizmu jedini¢ne
propagacije, s tim Sto se ovoga puta radi o rezonovanju u teoriji. Ova procedura
se obi¢no poziva nakon Sto se utvrdi da ne postoji konflikt u teoriji. U algoritmu

se poziva u okviru funkcije TheoryPropagation - linija 6.

11

GLAVA 3. EGZAKTNI ALGORITMI

e cxplainLiteral(l, E): nalaze teorijskom resavac¢u da objasni literal [koji je rani-
je postavljen na trag mehanizmom teorijske propagacije. Objasnjenje teorijske
propagacije E predstavlja bilo koji skup literala sa traga « koji prethode lite-
ralu [takav da vazi E =1 [. Ova procedura se poziva tokom analize konflikta,
kad god je potrebno iz konfliktne klauze eliminisati literal koji je nastao te-
orijskom propagacijom (rezolucija se sprovodi nad klauzom —FE v [¢me se
eliminiSe literal [iz tekuce konfliktne klauze). U algoritmu se poziva u okviru

funkcije AnalyzeT heoryConflict - linija 13.

12

GLAVA 3. EGZAKTNI ALGORITMI

Algoritam 2 CDCL(T) algoritam

1: dl < 0;
2: while true do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

1< 0;
(o, conf) < UnitPropagation(F, a);
while i < num _t_solvers OR conf = CONFLICT do
(v, conf) « TheoryPropagation(F, a,);
1 — 1+ 1
end while
if conf = CONFLICT AND check conflict = true then
if di = 0 then
return UNSAT;
end if
(learned_clause, bl) <« AnalyzeT heoryCon flict(conf,i);
F — F v {learned_clause};
Backtrack(a, bl), dl < bl;
J < 0;
while 7 <num _t solvers do
theory solver[j] — backjump(bl);
J—J+1
end while
continue;
end if
if IsCompleteTrail(a, F) then
break;
end if
decision_var < ChooseDecisionV ariable(a, F);
a «— a v {decision_var = TRUE/FALSE};
J<0;
while 7 < num_t_solvers do
theory solver[j] — newLevel();
theory solver[j] — assertLiteral(decision _var);
J—J+1L
end while

34: end while
35: return SAT;

13

Glava 4

SAT reSavaci zasnovani na lokalnoj

pretrazi

GSAT i WalkSAT su popularni algoritmi lokalne pretrage koji se koriste za re-

savanje SAT problema i u ovom poglavlju ¢e biti viSe rec¢i o njima.

4.1 GSAT

GSAT algoritam (algoritam 3) je randomizovani algoritam lokalne pretrage koji
ima za cilj pronalazenje zadovoljavajuce valuacije za datu formulu koja je u KNF
formi. Algoritam pocinje sa nekom pocetnom valuacijom, koja moze biti nasumic¢na
ili zasnovana na nekom heuristickom pristupu. Algoritam iterativno pokuSava da
poboljsa trenutnu valuaciju tako Sto menja vrednost nasumic¢no izabrane promen-
ljive sa ciljem da maksimizuje broj zadovoljenih klauza formule. GSAT nastavlja sa
iteracijama sve dok ne pronade zadovoljavajuéu valuaciju (sve klauze su zadovolje-
ne), ili dok se ne ispuni unapred definisani uslov zaustavljanja (maksimalan broj
iteracija ili vremensko ogranicenje).

Prilikom menjanja vrednosti, algoritam moZe da ima bo¢na kretanja (engl. si-
deways moves). To su koraci pri kojima nema povecanja broja zadovoljenih klauza
formule. Kada nema promene u broju zadovoljenih klauza nakon promene vrednosti
izabrane promenljive, to znaci da je algoritam dosao u lokalni maksimum, takozvani
plato (engl. plateau) jer trenutno ne moze da nade bolje resenje. Plato moze biti
privremeno stanje ili moze trajati tokom celog izvrsavanja algoritma. Ovo se smatra
glavnim problemom u GSAT algoritmu jer sprecava dalje poboljSanje valucije i moze

dovesti do suboptimalnog resenja. Kada algoritam zapadne u plato, postoji potreba

14

GLAVA 4. SAT RESAVACI ZASNOVANI NA LOKALNOJ PRETRAZI

za mehanizmima ili heuristikama koje mogu prevazié¢i ovaj problem i nastaviti sa
traganjem za boljim resenjem. U veéini sluc¢ajeva plato vodi ka drugom platou, dok
sa velikim brojem promenljivih algoritam ima manju Sansu da se zaglavi u lokalnom
minimumu, ali postoji mogucénost trosenja velike koli¢ine vremena na individualnim

platoima.

Algoritam 3 GSAT(F)
fori=1to MAX TRIES do

o < slucajno generisana valuacija

for j =1to MAX FLIPS do
if o zadovoljava F' then

return o
end if
v <« promena vrednosti promenljive koja rezultuje najve¢im smanjenjem
broja nezadovoljenih klauza

Promeni vrednost v u o

end for

end for
return FAIL

4.2 WalkSAT

WalkSAT algoritam (algoritam 4) je algoritam lokalne pretrage za SAT problem
nastao kao poboljsanje GSAT algoritma. Za razliku od prethodnog algoritma, Walk-
SAT bira promenljivu iz slu¢ajno izabrane klauze koja je nezadovoljena u tekucoj
valuaciji. Nakon izabrane nezadovoljene klauze, algoritam primenjuje slobodan po-
tez (eng. freebie move), tj. bira promenljivu (iz prethodno sluc¢ajno izabrane klauze)
¢ijom promenom se neé¢e povecati broj nezadovoljenih klauza. Ideja iza slobodnih
poteza je da se koristi informacija o strukturi problema i klauzama kako bi se iden-
tifikovali koraci koji vode ka poboljsanju resenja.

Ako takva promenljiva ne postoji u klauzi, algoritam ¢e sa odredenom verovatno-
¢om p na slucajan nacin izabrati promenljivu iz izabrane klauze, dok sa verovatno-
¢om 1—p bira promenljivu iz izabrane klauze ¢ija bi promena dovela do minimalnog
povecanja broja nezadovoljenih klauza (ova vrednost se obi¢no naziva break-count
vrednost). Pogodna vrednost parametra p se dobija eksperimentalno. Na primer, za

slucajno generisane 3-SAT probleme utvrdeno je da je ta vrednost 0.57 [8]

15

GLAVA 4. SAT RESAVACI ZASNOVANI NA LOKALNOJ PRETRAZI

Algoritam 4 WalkSAT(F)

fori=1to MAX TRIES do
o < slucajno generisana valuacija
for j=1to MAX FLIPS do
if o zadovoljava F' then
return o
end if
C « slu¢ajno izabrana nezadovoljena klauza
if 3 promenljiva z € C za koju je break-count = 0 then

Ve //slobodan potez
else
Sa verovatnocom p: //potez nasumi¢nog hoda
v <« a promenljiva iz C' izabrana slucajno
Sa verovatnoc¢om 1 — p: //pohlepan potez
v < a promenljiva iz C' sa najmanjim break-count
end if
Promeni vrednost v u o
end for

end for
return FAIL

Glava 5

Ugradnja lokalne pretrage u CDCL

algoritam

Nakon opisa CDCL algoritma u glavi 3 i algoritama lokalne pretrage u glavi 4
postavljeni su temelji za razumevanje postupka ugradnje algoritama lokalne pre-
trage u CDCL algoritam, na nacin na koji je to opisano u radu [10], a Sto ¢e biti
predmet razmatranja u ovoj glavi. Ideja je da se koristi CDCL algoritam kako bi bila
pronadena pogodna valuacija na koju bi zatim bio primenjen algoritam lokalne pre-
trage. Pretpostavka je da bi za tako formiranu valuaciju bilo potrebno manje koraka
u algoritmu lokalne pretrage za pronalazenje zadovoljavajuce valuacije. Ako lokalna
pretraga ne nade zadovoljavajuc¢u valuaciju, CDCL algoritam nastavlja pretragu sa

mesta gde je zaustavljen.

5.1 Opis postupka ugradnje lokalne pretrage u
CDCL algoritam

Postupak ugradnje lokalne pretrage u CDCL algoritam prikazan je u algoritmu 5.
Kada CDCL algoritam tokom pretrage dode do ¢vora sa parcijalnom valuacijom
koja zadovoljava neke unapred zadate kriterijume (a koji ¢e biti precizno opisani
u nastavku) pretraga se zaustavlja, a taj ¢vor se pamti kako bi se pretraga kasnije
mogla nastaviti. Algoritam ulazi u rezim rada bez vracanja unazad, koji koristi
jedini¢nu propagaciju i postojecu heuristiku grananja da dopuni ostatak valuacije
bez vrac¢anja unazad, potpuno ignorisué¢i eventualne konflikte. Nakon formiranja

potpune valuacije, poziva se lokalna pretraga koja polaze¢i od te valuacije pokuSava

17

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

da pronade zadovoljavajucu valuaciju. Ako lokalna pretraga ne uspe da pronade

model za odredeno vreme, algoritam se vra¢a na osnovnu CDCL pretragu od ¢vora

u kome je CDCL algoritam bio zaustavljen. Slika 5.1 ilustruje opisani proces.
Parcijalna valuacija « ispunjava kriterijum za prelazak u rezim lokalne pretrage

ako ispunjava bar jedan od sledeca dva uslova:

. % > p, gde je o parcijalna valuacija u kojoj nije identifikovan konflikt, |V

ukupan broj promenljivih, a p parametar sa vrednoséu izmedu 0 i 1. Vrednost
ovog parametra se odreduje eksperimentalno (u radu [10] je koris¢ena vrednost
0.4, dobijena na osnovu preliminarnih eksperimenata na slucajnom uzorku

instanci sa SAT takmicenja).

|a]
|a_ longest|

acija, a q parametar sa vrednoséu izmedu 0 i 1. Vrednost ovog parametra se

> q, gde je a_longest najduza do tada pronadena parcijalna valu-

takode odreduje eksperimentalno (u radu [10] je koriséena vrednost 0.9.)

P

Unknown:
Continue CDCL

LS Solver

SAT

Slika 5.1: Graficki prikaz relaksacije CDCL-a, slika je uzeta iz rada [10]

Jedini¢na propagacija koja se koristi za upotpunjavanje parcijalne valuacije za
lokalnu pretragu je identi¢na kao za osnovni CDCL algoritam uz ignorisanje even-
tualnih konflikata. Pravilo odlu¢ivanja se primenjuje na promenljive koje ostanu
nedefinisane nakon iscrpne primene jedini¢ne propagacije. Nakon primene pravila
odlucivanja (u skladu sa postoje¢im heuristikama grananja) ponovo se pokrece je-

dini¢na propagacija. Ovaj postupak se ponavlja dok se ne dobije potpuna valuacija.

18

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

Algoritam 5 CDCL sa ugradenom lokalnom pretragom

O W W W W W W W NN NN NN N NN D e e e e s

38:
39:
40:

[
e

dl < 0;
a «— 0;
a_longest < 0;
if UnitPropagation(F,a) = CONFLICT then
return UNSAT',
end if
while 1 nede finisana promenljiva v u tragu o do
x «— PickBranchVar(F, a);
v <« PickBranchPolarity(F, a);
dl < dl + 1;
a.push(z,v);
if UnitPropagation(F,a) = CONFLICT then
bl — Conflict Anaysis(F, a);
if bl < 0 then
return UNSAT;
else
a_longest «— maz(a_longest, a);
Backtrack(F, o, bl), dl < bl;

end if
else if (% >p OR m_l‘;#est‘ > ¢) then
B

while 3 is not complete do
f « PickBranchVar(F,J);
B <« PickBranchPolarity(F, ();
B.push(zx,v);
Unit Propagation(F, B);
end while
if LocalSearch(B,terminate _condition) then
return SAT
end if
Update(a_longest LS, latest LS,a best LS)
if Ispunjeni kriterijumi za ponovno pokretanje then
Backtrack(F, a,0);
dl < 0;
update Polarities From Local Search();
updateV SIDSScoresFromLocalSearch();
end if
end if
end while
return SAT

19

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

5.2 Uticaj lokalne pretrage na heuristike grananja
CDCL algoritma

U prethodnom poglavlju je opisan postupak ugradnje lokalne pretrage u CDCL
algoritam, gde CDCL algoritam pomaze lokalnoj pretrazi tako Sto pruza pogodnu
pocetnu tacku, nakon koje ¢e lokalna pretraga nastaviti traganje za zadovoljivom
valuacijom. U ovom poglavlju se razmatra na koji nacin lokalna pretraga moze
pomo¢i CDCL algoritmu, tj. na koji na¢in informacije dobijene lokalnom pretragom
mozemo iskoristiti za dalje usmeravanje CDCL pretrage.

Postoje dva nac¢ina na koji se to moze uraditi. Prvi na¢in podrazumeva upo-
trebu polariteta literala u valuaciji dobijenoj lokalnom pretragom. Ovi polariteti se
koriste za azuriranje sa¢uvanih polariteta, na osnovu kojih CDCL pridruzuje pola-
ritete literalima odluc¢ivanja. Drugi nacin je uticaj frekvencije uc¢eséa promenljivih u
konfliktima tokom lokalne pretrage na skorove promenljivih u VSIDS heuristici iz-
bora promenljive odluc¢ivanja. U nastavku ovog poglavlja razmatramo obe navedene
tehnike.

Svaki put kada se CDCL resava¢ ponovo pokrene (pretrazivanje se vrac¢a na nulti
nivo odluke), sa¢uvani polariteti svih promenljivih se azuriraju na osnovu valuacije
dobijene lokalnom pretragom. S tim ciljem se belezi najbolja valuacija (sa najmanje
nezadovoljenih klauza) u svakom pokretanju algoritma lokalne pretrage.

Preciznije, razmatraju se sledeé¢e valuacije dobijene u prethodnim pozivima lo-

kalne pretrage:

e o longest LS - odnosi se na valuaciju dobijenu lokalnom pretragom u kojoj
se pocetno reSenje prosiruje na osnovu «_longest, pri cemu je o _longest naj-
duza parcijalna valuacija prethodne CDCL pretrage. Kada god se o longest

azurira, algoritam azurira i a_longest LS.
e o latest LS - ovo je valuacija dobijena u poslednjem pozivu lokalne pretrage.

e o best LS - najbolja valuacija (sa najmanje nezadovoljenih klauza) od do-

sadasnjih valuacija dobijenih lokalnom pretragom.

Kad god se CDCL ponovo pokrene vrsi se azuriranje sa¢uvanih polariteta pro-
menljivih na osnovu jedne od gore navedenih valuacija, sa verovatno¢ama datim u
tabeli 5.1. Takve promene su uvek dozvoljene, jer ne uti¢u na korektnost CDCL

algoritma. Opisani proces azuriranje sa¢uvanih polariteta pokusava da postigne dva

20

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

Tabela 5.1: Verovatnoca upotrebe razli¢itih valuacija prilikom azuriranja sa¢uvanih
polariteta

H Ime promenljive « longest LS « latest LS « best LS bez promene H
| Verovatnoca 20% 65% 5% 10% |

cilja - intenziviranje i diversifikaciju: @ _longest LS i« _best LS sluze za nalazenje
duzih parcijalnih valuacija, dok o latest LS dodaje diversifikaciju, posto lokalna
pretraga zapocinje sa po¢etnim valuacijama na razli¢itim granama. S obzirom na to
koliko se ponovna pokretanja cesto deSavaju u savremenim SAT reSavacima, azuri-
ranje polariteta na osnovu lokalne pretrage se vrsi prili¢no ¢esto i sa verovatnoé¢om
od 25% ide u smeru koji odredjuju ili o longest LS ili a_best LS.

Drugi nac¢in usmeravanja CDCL pretrage se ogleda u poboljsavanju strategije
izbora promenljive odlu¢ivanja koris¢enjem frekvencije uceséa promenljive u kon-
fliktima tokom lokalne pretrage, sa akcentom na poslednjem pozivu lokalne pretra-
ge. Za svaku promenljivu njena frekvencija u konfliktima tokom lokalne pretrage
je definisana kao broj koraka u kojima se pojavljuje u bar jednoj nezadovoljenoj
klauzi podeljen sa ukupnim brojem koraka lokalne pretrage, a zatim pomnozeno
sa konstantom koja je ceo broj (u radu [10] je uzeto 100). Vrednost frekvencije
se izraCunava prema poslednjem pozivu lokalne pretrage. Nakon svakog ponovnog
pokretanja CDCL algoritma, dobijene frekvencije se koriste za azuriranje VSIDS
skorova promenljivih, koji se uvecavaju za vrednosti ovih frekvencija. Time se u
budué¢im grananjima u CDCL algoritmu favorizuju promenljive koje su ucestvovale

u ve¢em broju konflikata tokom lokalne pretrage.

21

Glava 6

Ugradnja lokalne pretrage u
CDCL(T) algoritam

U prethodnoj glavi je dat opis ugradnje lokalne pretrage u CDCL algoritam i
uticaj lokalne pretrage na heuristiku grananja CDCL algoritma. U ovoj glavi raz-
matramo ugradnju ove tehnike u SMT resavace zasnovane na CDCL(T) algoritmu.

Glavni izazov pri ugradnji lokalne pretrage u CDCL(T) algoritam jeste uskladi-
vanje njenog rada sa teorijskim resavacima. Naime, uloga teorijskih resavaca je da
otkrivaju teorijske konflikte (tj. nezadovoljivost parcijalne valuacije u teoriji) kao i
da otkrivaju teorijske propagacije (tj. logicke posledice tekuce parcijalne valuacije u
teoriji). Pritom, u standardnom CDCL(T) algoritmu nema smisla ispitivati posto-
janje propagacija nakon Sto se otkrije konflikt, veé¢ se tada prelazi na objasnjenje
konflikta i vra¢anje unazad. Zbog toga su procedure odlu¢ivanja u teorijskim resava-
¢ima tako dizajnirane da ne proveravaju postojanje teorijskih propagacija u slucaju
da je ve¢ utvrdjen konflikt u teoriji. Sa druge strane, u slu¢aju ugradnje lokalne pre-
trage, potrebno je obezbediti da teorijski reSavaci nastave sa otkrivanjem teorijskih
propagacija, ignorisuci pritom postojanje konflikta. Ovaj proces se obavlja dok se
valuacija ne kompletira, nakon ¢ega se nad njom pokrece lokalna pretraga. Otkriva-
nje teorijskih propagacija u ovoj fazi je vazno, jer zelimo da dobijena valuacija bude
Sto je moguce vise usaglasena sa logickim zakonitostima koje vaze u teoriji.

Sledec¢i veliki problem se javlja prilikom izlaska iz lokalne pretrage kada je po-
trebno interne strukture podataka teorijskih resavaca vratiti na stanje koje su imale
pre pocetka lokalne pretrage, kako bismo mogli da nastavimo sa radom CDCL(T)
algoritma tamo gde smo stali. Najelegantnije resenje je da najpre vratimo teorij-

ske resavace na stanje koje su imali na nultom nivou (tj. da ih restartujemo), a

22

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

da zatim, koriste¢i prethodno sacuvane literale odluc¢ivanja, uz primenu propagaci-
ja ponovo formiramo odgovarajuée stanje struktura podataka. Naravno, ne postoji
garancija da ¢e propagacije biti izvrSene istim redosledom niti sa identi¢nim obja-
Snjenjima, ali to nije od sustinskog znacaja za korektnost algoritma. Drugo resenje
bi bilo ¢uvanje internih struktura teorijskih resavaca, sto bi bilo previse skupo. U
ovom radu, mi smo se odlucili za prvi pristup.

Postupak ugradnje lokalne pretrage u CDCL(T) algoritam prikazan je u algorit-

mu 6.

23

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Algoritam 6 CDCL(T) sa ugradenom lokalnom pretragom

1: dl < 0;

2: a0

3: a_longest < 0;

4: check _conflict < true
5: while true do

6
7
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

Propagation; //algoritam 7
if IsCompleteTrail(o, F) then
break;
end if
if(%>pORm_l‘+|gest‘>q)then
Aleopy < Q;
check _conflict < false;
(e, dl) < completeTrail(F, «,dl); //algoritam 8
B a;
Restart;
Jlip < 0;

while MAX FLIP > flip do
if LocalSearch(B,terminate _condition) then
for (i = B.indexO f FirstLevel(); i < f.size(); i «<— i+ 1) do
a — a v decision(f[i])
end for
Propagation;
if conf = CONFLICT then
F—Fu-—pg;
Restart;
continue;
else
return SAT
end if
end if
end while
Restart;
Q<= Qleopy;
check _conflict — true;
Propagation; //algoritam 7
end if
Update(a_longest LS, alatest LS,a_best LS);
decision(F, a, dl); //algoritam 9

39: end while
40: return SAT;

24

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Algoritam 7 Propagation

1: (a,conf) < Unit Propagation(F, a, check conflict);

2: 1« 0;

3: while i <num_t_ solvers OR conf = CONFLICT do

4: (av, conf) < TheoryPropagation(F, a,1);

5: 1 — 1+ 1

6: end while

7. if conf = CONFLICT AND check conflict = true then
8: if dl = 0 then

9: return UNSAT;

10: end if

11: (learned_clause, bl) <« AnalyzeTheoryCon flict(conf,i);
12: F — F U {learned_clause};

13: a_longest «— maz(a_longest, a);

14: Backtrack(a, bl), dl < bl;

15: continue;

16: end if

Algoritam 8 completeTrail(F, o, dl)

1: while « is not complete do

2 (cv, conf) < UnitPropagation(F, a, check _conflict);

3: 1< 0;

4: while i < num_t_solvers OR conf = CONFLICT do

5: (av, conf) < TheoryPropagation(F, «,1);

6 it 1

7 end while

8: decision(F, o, dl) //algoritam 9
9: end while

10: return («,dl);

Algoritam 9 decision(F, «, dl)

decision_var < ChooseDecisionV ariable(a, F);
dl — dl +1;
a — a v {decision_var = TRUE/FALSE};

return (o, dl);

25

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Na pocetku algoritma se vr8i iscrpna propagacija (jedini¢na i teorijska). Taj deo
koda je smeSten u algoritam 7 radi preglednosti. U slu¢aju da dode do konflikta
ulazi se u analizu konflikta, generisanje klauze povratnog skoka i vracanje unazad.
Ukoliko nije doslo do konflikta, pre dodavanja novog literala odlu¢ivanja (algoritam
9) proveravaju se uslovi za ulazak u lokalnu pretragu na liniji 10. Uslovi koji treba
da budu ispunjeni su detaljno izlozeni u poglavlju 5.1.

Kada se uslovi postignu, kreira se kopija trenutne parcijalne valuacije (oznacena
sa «_copy u algoritmu). Ova kopija nece sadrzati sve literale parcijalne valuacije,
veé samo one sa nultog nivoa, kao i literale odlu¢ivanja. Ove informacije su dovoljne
da nakon lokalne pretrage teorijske resavace vratimo u predasnje stanje, kao i da
rekonstruiSsemo parcijalnu valuaciju a.

Originalna parcijalna valuacija se prosiruje do potpune valuacije i tokom tog
procesa pokrece se propagacija, kako jedini¢na, tako i teorijska, kao i proces odabira
literala odluc¢ivanja (algoritam 8). Takode, u tom koraku se konflikti ignorisu, bez
obzira na to da li poti¢u iz klauza ili iz teorije. Ovo je tehnicki omoguéeno sa
indikatorom check conflict koji se postavlja na false pre pocetka gore navedenog
procesa, dok se pri izlasku iz lokalne pretrage indikator vraca na true (linija 33).
Potpuna valuacija se kopira u novu promenljivu § (beta trag) na koju ¢e se primeniti
lokalna pretraga, a glavna valucija se restartuje (vraca na nulti nivo odlu¢ivanja).
Prilikom restartovanja, strukture podataka svih teorijskih resavaca se takode vracaju
na stanje u kom su bile na nultom nivou odluc¢ivanja.

Lokalna pretraga se izvodi po veé¢ objasnjenom principu, uz prilagodavanje pro-
cesa u sluc¢aju pronalaska potencijalno tacne valuacije. Tada se na glavni trag dodaju
literali sa dobijenog beta traga (kao literali odlu¢ivanja), a zatim za tako kompleti-
ranu valuaciju teorijski reSavaci proveravaju postojanje konflikata u teorijama. Ako
nijedan teorijski resava¢ ne prijavi konflikt imamo zadovoljavajuéu valuaciju. Sa
druge strane, ako neki od teorijskih resavaca prijavi konflikt, ne ulazi se u objasnja-
vanje konflikta, ve¢ se beta trag negira i dodaje u skup naucenih klauza, nakon cega
se postupak lokalne pretrage nastavlja.

Nakon zavrsetka petlje lokalne pretrage, glavni trag se ponovo restartuje, a ranije
sacuvani literali odluc¢ivanja se dodaju na trag jedan po jedan, praceni iscrpnom

propagacijom, kako bi se vratilo predasnje stanje reSavaca.

26

Glava 7
Implementacija 1 evaluacija

U prvom poglavlju ove glave bi¢e prikazana implementacija tehnike ugradnje
lokalne pretrage u CDCL(T) algoritam. Tehnika je implementirana u okviru SMT
reSavaca ArgoSMT [3], u programskom jeziku C++, i javno je dostupna '. U drugom
poglavlju su predstavljeni rezultati evaluacije razli¢itih konfiguracija modifikovanog

reSavaca, kao i originalnog, radi poredenja.

7.1 Implementacija

Centralni deo implementacije nalazi se u klasi Solver, koja predstavlja osnovnu
komponentu ArgoSMT resavaca. Ova klasa implementira metodu solve(), u kojoj se
izvriava glavna petlja algoritma CDCL(T). Tokom rada, pozivaju se procedure koje
redom sprovode propagaciju, detekciju konflikata, objasnjavanje propagiranih lite-
rala i donoSenje odluka. Konkretno, klasa sadrzi metode poput apply propagate(),
apply _conflict(), apply explain() i apply decide(), od kojih svaka implementi-
ra jedan od osnovnih koraka CDCL(T) algoritma i menja interno stanje resavaca.
Metode relevantne za ovaj rad bi¢e prikazane u tabeli 7.1. Na ovaj nacin se gradi

struktura pretrage, resavaju konflikti i azurira trag sa odgovarajuc¢im literalima.

'https://github.com/dijanaalanovic/Master/blob/main/argosmt-master-moj

27

https://github.com/dijanaalanovic/Master/blob/main/argosmt-master-moj

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Tabela 7.1: Metode klase Solver

Metod Opis

apply _decide(l) Primenjuje pravilo grananja za literal [koje podrazume-
va postavljanje literala na trag, ako prethodno trag ne
sadrzi njega ili njegovu negaciju.

apply propagate(l,i) | Primenjuje pravilo jedini¢ne propagacije ili teorijske za
literal [i teoriju sa indeksom i (i = 0 za jedini¢nu pro-
pagaciju).

apply _conflict(conf,i) | Poziva se kada se prepozna konflikt i s tim zapocinje
analiza konflikta i formiranje klauze povratnog skoka (
i = 0 u slucaju iskaznog konfikta).

apply _explain(l,expl,i) | Izvedeni literal [iz skupa obja$njenja konflikta se zame-
njuje svojim objasnjenjem expl za teoriju sa indeksom 2
(i = 0 za literale izvedene jedini¢nom propagacijom).

apply _restart() Restartuje trag na nulti nivo kao i stanja teorijskih re-
Savaca kako bi se izbeglo zapadanje u neperspektivne
grane prostora pretrage.

Posto smo pojasnili referentne metode klase Solver, naredni korak je razmatra-
nje detalja implementacije lokalne pretrage, koja je takode deo ove klase i imple-
mentirana je kroz metodu local search(). U okviru iste klase dodata je i metoda
chooseVariable _and__flip(...), koju poziva local _search() nad odabranom klau-
zom. Njena uloga je da sprovede logiku izbora pogodnog literala i izvrsi promenu
njegovog polariteta.

Svaki teorijski resava¢ (uklju¢ujuéi i specijalni resava¢ zaduzen za rezonova-
nje nad klauzama, tj. za jedini¢nu propagaciju) poseduje implementiranu meto-
du check _and_propagate(...), koja se u glavnoj petlji metode solve() poziva radi
provere konflikata i sprovodenja propagacije u teorijama. U sluc¢aju otkrivanja kon-
flikta (propagacije) u teoriji, ova metoda poziva metodu apply conflict() (odnosno
apply _propagate()) klase Solver. Za potrebe lokalne pretrage je napravljeno njeno
preopterecenje sa dodatim argumentom koji predstavlja indikator. Ako je vrednost
indikatora 1 to bi znacilo da se funkcija poziva u okviru lokalne pretrage i da bi
trebalo ignorisati eventualnu prijavu konflikata i njihovo objasnjavanje. U tu svrhu
se indikator propagira kroz sve metode teorijskih resavaca gde imamo mogucénost
prijave konflikta. Takode, ovaj indikator nam govori da li treba pozvati metodu
apply _conflict() u slu¢aju otkrivanja konflikta u teoriji, ili taj konflikt treba igno-
risati i nastaviti sa propagacijama.

Metoda apply restart() se koristi u metodi lokalne pretrage na vise mesta. Prvo

28

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

nailazimo na nju prilikom restartovanja traga nakon kopiranja u radni beta trag
kako bi stanje teorijskih resavaca bilo vrac¢eno na stanje iz nultog nivoa odluc¢ivanja.
Sledece jako bitno mesto je kada se naide na potencialno ta¢nu parcijalnu valuaciju
u beta tragu. Literali sa beta traga se dodaju kao literali odluc¢ivanja i pokreée se
propagacija (kod 7.1). Ako se prijavi konflikt pokrece se metoda restartovanja koja
bi vratila stanje reSavaca na stanje pre dodavanja literala sa beta traga i nastavlja se
sa trazenjem potencijalno ta¢ne parcijalne valuacije sa kojom bi se proces ponovio.
Sledece pokretanje je pri izlasku iz lokalne pretrage u slucaju da zadovoljavajuca
valuacija nije pronadena, kada je potrebno vratiti se na stanje resavaca pre ulaska
u lokalnu pretragu (kod 7.2).

Beta trag koji predstavlja kopiju potpune valuacije nad kojom se primenjuje

lokalna pretraga je definisan kao neureden skup radi lakse pretrage literala.

Kod 7.1: Propagacija pozvana u okviru lokalne pretrage radi provere potencijalno

zadovoljavajucée valuacije.

unsigned i = 0;

do {
_state_changed = false;
_theory_solvers[i]->check_and_propagate(layer, 1);

// Second parameter is local search flag

if (_state_changed && (i '= 0 || layer != 0)){
i = layer = 0;
}
elseq
i++;
}

if (_conflict_set.is_conflict()){ //conflict
apply_restart ();
ind_for_theory_solvers = 1;

break;

¥

while(i < _theory_solvers.size());

29

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Kod 7.2: Nije pronadena zadovoljavajuca valuacija. Vra¢anje internih struktura po-

dataka teorijskih reSavaca na stanje pre ulaska u lokalnu pretragu.

apply_restart () ;

_conflict_set.reset_conflict();

for (unsigned j = 0; j < alpha_copy.size(); j++){
unsigned ind = O;

for(unsigned k = 1v1_0; k < _trail.size(); k++){

if (alpha_copy[j] == _traill[k] or get_literal_data(
alpha_copy[jl)->get_opposite() == _traill[k]){
ind = 1;
break;
}
}
if (ind == 1)

continue;

apply_decide (alpha_copy[jl);

// After each decide step, propagation is performed

unsigned i = 0;
layer = num_of_layers -1;
do
{
_state_changed = false;

_theory_solvers[i]->check_and_propagate(layer);

if (_state_changed && (i !'= 0 || layer != 0))
i = layer = O0;
else
i++;

}
while (! _conflict_set.is_conflict() && i < _theory_solvers.

size());

30

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

7.2 Evaluacija

Evaulacija predstavljene tehnike radena je na racunaru sa cetiri AMD Opteron
6168 1.6GHz procesora sa po 12 jezgara (tj. 48 jezgara ukupno), i 94GB RAM-a.
Korpus instanci nad kojima je evaluacija radena je iz SMT-LIB biblioteke [3]| sa
ukupnim brojem od 1083 instanci. Prilikom evaluacije, vremensko ogranic¢enje bilo
je 1200 sekundi po instanci, dok je memorijsko ogranicenje bilo implicitno odredeno
hardverskim ogranic¢enjima samog sistema.

Rezultati ¢e biti predstavljeni za nekoliko najboljih vrednosti koeficijenata, a to
su pomenuti p, g i ogranicenje broja iteracija petlje lokalne pretrage, pri ¢emu ¢e se
za svaku kombinaciju analizirati broj resenih instanci, prose¢no vreme reSavanja i
vreme trajanja same lokalne pretrage, a nakon toga ¢e se najbolji rezultat uporediti
sa rezultatom originalnog resavaca.

Prvi koeficijent koji se analizira je p i za njega su izabrane tri vrednosti sa

najboljim rezultatima koji se mogu naci u tabeli 7.2.

31

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Tabela 7.2: Rezultati postignuti za razli¢ite vrednosti koeficienta p. Vremena su
izrazena u sekundama.

Vrednost p 0.40 0.45 0.50
Br. resenih instanci 112 111 119
Srednje vreme reSavanja 2163.71 2163.87 2150.07
Srednje vreme re$avanja po instanci * | 115.14 96.12 125.45
Srednje vreme lokalne pretrage 90.52 60.13 82.9

Podsetimo se da se koeficijent p koristi u uslovu za ulazak u lokalnu pretragu, t;.
da bi se zapocela lokalna pretraga p treba da bude manje od odnosa duzine parci-
jalne valuacije i ukupnog broja promenljivih. Veé¢e vrednosti parametra p pomeraju
prag za ulazak u lokalnu pretragu, sto dovodi do toga da se algoritam rede oslanja
na stohasti¢ne komponente i vise na sistemati¢nu pretragu. Sa druge strane, manje
vrednosti p omogucavaju ¢escée aktiviranje lokalne pretrage, sto povecava mogucénost
pronalaska resenja u slucajevima gde CDCL(T) sam po sebi zapada u neperspek-
tivne grane. Najbolji rezultati postignuti su za vrednost p = 0.5 za koju je reSeno
najvise instanci, uz relativno stabilno prose¢no vreme resavanja.

Koeficijent ¢ se nalazi u drugom delu uslova za ulazak u lokalnu pretragu i
on treba da bude manji od odnosa duzine trenutne parcijalne valuacije i najduze
parcijalne valuacije do tada nadene. U tabeli 7.3 prikazane su 4 razli¢ite vrednosti

koeficijenta sa najboljim rezultatima.

Tabela 7.3: Rezultati dobijeni za razli¢ite vrednosti koeficienta ¢. Vremena su izra-
Zena u sekundama.

Vrednost ¢ 0.87 0.9 0.93 0.97
Br. resenih instanci 114 119 114 112
Srednje vreme resavanja 2158.95 2150.07 2159.58 2162.4

Srednje vreme reSavanja po instanci 110 12545 116.02 125.45
Srednje vreme lokalne pretrage 57.34 82.9 52.59 51.68

Rezultati pokazuju da vrednost ¢ = 0.9 donosi najbolju kombinaciju izmedu
broja reSenih instanci i prose¢nog vremena. SuviSe niska vrednost q vodi ka pre-
uranjenom ukljuc¢ivanju lokalne pretrage, dok previsoka vrednost produzava vreme
¢ekanja do njenog aktiviranja i smanjuje efikasnost tehnike. Ovo potvrduje hipotezu
da lokalna pretraga najbolje funkcionise kada se aktivira tek nakon §to CDCL(T)

obezbedi dovoljno ,dobru® parcijalnu valuaciju.

30dnos ukupnog vremena i ukupnog broja istanci
4Vreme resavanja istance za koju je nadeno resenje

32

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Poslednja analiza odnosi se na koeficijent koji predstavlja ograni¢enje broja itera-
cija petlje lokalne pretrage, u nastavku M AX FLIPS. On predstavlja maksimalan
broj promena polariteta literala tokom izvrsavanja funkcije lokalne prtrage. U tabeli

7.4 je dat prikaz rezultata za razlic¢ite vrednosti koeficijenta.

Tabela 7.4: Rezultati dobijeni za razli¢ite vrednosti parametra M AX FLIPS. Vre-
mena su izrazena u sekundama.

Vrednost MAX FLIPS 500 450 400
Br. reSenih instanci 114 113 119

Srednje vreme resavanja 2158.28 2160.27 2150.07

Srednje vreme resavanja po instanci 103.71 102.28 125.45
Srednje vreme lokalne pretrage po instanci | 46.24 45.43 82.9

Prevelik broj iteracija moze uzrokovati bespotrebno troSenje vremena na lo-
kalnu pretragu bez garancije uspeha, dok premali broj iteracija ograni¢ava njenu
mo¢ da izbegne lokalne minimume. Najbolji rezultati postignuti su za vrednost
MAX FLIPS = 400, za koju je dobijena najbolja kombinacija broja resenih in-
stanci 1 vremena izvrSavanja.

Najbolji rezultat je dobijen za vrednostip = 0.5,¢ = 091 MAX FLIPS = 400,
stoga se vrsi njegovo poredenje sa rezultatom originalnog resavaca.

Vrednosti originalnog resavaca se mogu naci u tabeli 7.5.

Tabela 7.5: Rezultati poredenja izvrsavanja resavaca ArgoSMT sa i bez lokalne
pretrage. Vremena su izrazena u sekundama.

Resavaci ArgoSMT ArgoSMT local _search
Br. reSenih instanci 616 119
Br. zadovoljivih instanci 432 62
Srednje vreme reSavanja 1105.421 2150.07
Srednje vreme reSavanja po instanci 124 125.45

Iz datog se zakljuc¢uje da je originalni resavac resio 616, a modifikovani 119 od
ukupno 1083 istance, od kojih je 591 zadovoljivih, 373 nezadnovoljivih, a ostale
neresene. Prevedeno u procente, originalni reSava¢ je resio 56.88% instanci dok je
modifikovana verzija resila 10.99%.

Ako se ude u dublju analizu vremena 119 reSenih instanci dolazi se do sledeceg;:
e 17.65% (21 instanca) - reSene su brze u odnosu na original,

e 59.66% (71 instancu) - vreme reSavanja se razlikuje za manje od 1s,

33

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

e 17.65% (21 instancu) - razlika u vremenu resavanja se nalazi u intervalu od 1s
do 100s,

e 5% (6 instanci) - razlika u vremenu reSavanja je veéa od 100s.

Iako je originalni ArgoSMT resio znatno veci broj instanci, modifikovani resavac
sa ugradenom lokalnom pretragom pokazuje odredene prednosti. Analiza reSenih
instanci otkriva da je skoro 18% slucajeva reseno brze nego kod originala, dok se kod
dodatnih 60% vreme razlikuje za manje od 1s. Ovo sugeriSe da hibridni pristup, iako
trenutno inferioran u ukupnom broju resenja, poseduje potencijal za optimizaciju i
poboljsanje performansi.

Glavni nedostatak modifikovanog resavaca jeste drastican pad ukupne uspesnosti
u odnosu na originalni ArgoSMT. Medutim, ¢injenica da je kod znac¢ajnog broja
instanci vreme reSavanja uporedivo ili bolje ukazuje da se daljim unapredenjem
mehanizama integracije lokalne pretrage moze posti¢i ve¢a konkurentnost.

Vidimo da glavna ideja, odnosno upotreba lokalne pretrage, ima znac¢ajan poten-
cijal za dalje unapredivanje. Deo algoritma koji najvise uti¢e na vreme izvrSavanja
lokalne pretrage jeste izbor promenljive ¢ijom promenom polariteta se nece pove-
¢ati broj nezadovoljenih klauza (algotitam 4 - slobodan potez). Konkretno, kada
literal klauze prilikom promene polariteta postane netacan, mora se proveri da li
medu preostalim literalima te klauze postoji bar jedan koji ¢e u odnosu na trenutni
trag odrzati klauzu tacnom. Ova provera se sprovodi za sve literale izabrane klau-
ze u svim klauzama formule i predstavlja usko grlo u performansama. Potencijalna
unapredenja mogu se ostvariti ubrzavanjem ili modifikovanjem ovog procesa, na
primer izborom efikasnijih struktura podataka. Dalje unapredenje moze se posti¢i
uvodenjem tehnika masinskog ucenja, koje bi omoguéile pozivanje mehanizma lo-
kalne pretrage u situacijama u kojima to moze biti povoljno za ukupne performanse

resavaca.

34

Glava 8

Zakljucak

U okviru ovog istrazivackog rada razmatrana je mogucénost kombinovanja eg-
zaktnih algoritama i algoritama lokalne pretrage u okviru SAT i SMT resavaca,
sa ciljem poboljsanja njihove efikasnosti. U neophodnoj meri dat je opis CDCL i
CDCL(T) algoritma, kao i dva popularna algoritma lokalne pretrage za reSavanje
SAT problema, GSAT i WalkSAT. Posebna paznja posvecena je postupku ugradnje
lokalne pretrage u CDCL algoritam, radenom na osnovu referentnog rada [10], dok
je centralni doprinos ovog rada adaptacija tehnike u kontekstu SMT resavaca i njena
implementacija u okviru resavaca ArgoSMT.

Eksperimentalna evaluacija pokazala je da, iako originalni resavac¢ znacajno nad-
masuje modifikovani po broju resenih instanci, postoji odredeni broj slucajeva gde je
modifikovani pristup dao komparativne rezultate ili ¢ak nadmasgio osnovnu verziju.
Posebno je znacajan podatak da je kod skoro 77% reSenih instanci vreme reSava-
nja bilo priblizno kao kod originalnog resavaca, sto ukazuje na potencijal tehnike i
otvara prostor za dodatne optimizacije.

Kao pravac za dalja istrazivanja izdvajaju se: unapredenje komunikacije izmedu
lokalne pretrage i teorijskih resavaca, ispitivanje drugih heuristika i kriterijuma za
ulazak u lokalnu pretragu, kao i integracija naprednijih algoritama lokalne pretrage.
Pored toga, zanimljivo bi bilo ispitati primenu kombinovanog pristupa i u drugim
domenima.

Na osnovu svega izlozenog, moze se zakljuciti da iako trenutni rezultati ne donose
neposredna poboljSanja u odnosu na originalni resavac¢, sama ideja kombinovanja
egzaktnih i stohastickih algoritama predstavlja perspektivno polje istrazivanja koje

uz dalja usavrSavanja moze doprineti razvoju efikasnijih hibridnih resavaca.

35

Bibliografija

1]
2l

3]

4]

[5]

(6]

17l

8]

19]

SMT-LIB. on-line at: http://smtlib.cs.uiowa.edu/.

Marin Heule Armin Biere and Hans van Maaren. Incomplete algorithms. In
Handbook of satisfiability. 108 press, pages 187-189, 2019.

Milan Bankovié. Smt reSavac argosmt. 2016. on-line at: https://github.com/

milanbankovic/argosmt.

Stephen A. Cook. The complexity of theorem-proving procedures. In Procee-
dings of the third annual ACM symposium on Theory of computing — New York,
NY, United States, 3th May, 1971, pages 151-158.

Rivest L.Ronald Stein Clifford Cormen H. Thomas, Leiserson E. Charles. Np-
completeness. In Introduction to algorithms 4rd ed., pages 13431422, 2022.

Ines Lynce Joao Marques-Silva and Sharad Malik. Conflict-driven clause lear-
ning sat solvers. In Handbook of satisfiability.10S press, pages 131-155, 2009.

Leonid Levin. Universal’nye perebornye zadachi [universal search problems|(in
russian). In Problems of Information Transmission — Russia, 1973, Poceedings
(9 (3): pp. 265-266).

Ashish Sabharwal Lukas Krocl and Bart Selmanl. An empirical study of op-
timal noise and runtime distributions in local search. In Pro. 13th Int. Conf.
on Theory and Applications of Satisfiability Testing, Edinburgh, Scotland, 3/.
July 2010.

Ying Zhao Lintao Zhang Matthew W. Moskewicz, Conor F. Madigan and Sha-
rad Malik. Chaff: Engineering an efficient sat solver. In Annual ACM IEEE
Design Automation Conference, pages 530-535, 2001.

36

http://smtlib.cs.uiowa.edu/
https://github.com/milanbankovic/argosmt
https://github.com/milanbankovic/argosmt

BIBLIOGRAFIJA

[10] Cai Shaowei and Xindi Zhang. Deep cooperation of cdcl and local search for
sat. In Theory and Applications of Satisfiability Testing — SAT 2021, 24th
International Conference, Barcelona, Spain, July 5-9, 2021, pages 64—81, 2021.

37

Biografija autora

Dijana Alanovi¢ rodena je 18.04.1998. u Sapcu. Odrasla je u obliznjem naselju
pod imenom Zminjak gde je 2013. godine zavrsila osnovnu skolu ,Jovan Cviji¢”
kao nosilac Vukove diplome. Nakon toga je upisala srednju medicinsku skolu ,Dr
Andra Jovanovi¢” u gapcu i zavrsila je 2017. godine, takode kao nosilac Vukove
diplome. Odmah po zavrSetku srednje skole, upisala je osnovne akademske studije
matematike na Matematickom fakultetu u Beogradu, pod programom , Ra¢unarstvo
i informatika”. Diplomirala je u roku 2021. godine sa prosekom 8.05 i stekla zvanje
Diplomirani matematicar. Obrazovanje je nastavila odmah na istom fakultetu, gde
u oktobru 2021. godine upisuje master studije matematike, pod istim studijskim
programom. Tokom studiranja se zapogljava kao softvreski inZenjer u firmi Logit
Solution.

	Uvod
	Osnove
	Egzaktni algoritmi
	CDCL algoritam
	Algoritam CDCL(T)

	SAT rešavači zasnovani na lokalnoj pretrazi
	GSAT
	WalkSAT

	Ugradnja lokalne pretrage u CDCL algoritam
	Opis postupka ugradnje lokalne pretrage u CDCL algoritam
	Uticaj lokalne pretrage na heuristike grananja CDCL algoritma

	Ugradnja lokalne pretrage u CDCL(T) algoritam
	Implementacija i evaluacija
	Implementacija
	Evaluacija

	Zaključak
	Bibliografija

