
UNIVERZITET U BEOGRADU
MATEMATIČKI FAKULTET

Dijana N. Alanović

KOMBINOVANJE EGZAKTNIH
ALGORITAMA I ALGORITAMA LOKALNE
PRETRAGE U SAT I SMT REŠAVAČIMA

master rad

Beograd, 2025.

Mentor:

doc. dr Milan Banković, docent
Univerzitet u Beogradu, Matematički fakultet

Članovi komisije:

prof. dr Predrag janičić, redovni profesor
Univerzitet u Beogradu, Matematički fakultet

prof. dr Vesna Marinković, vanredni profesor
Univerzitet u Beogradu, Matematički fakultet

Datum odbrane:

Naslov master rada: Kombinovanje egzaktnih algoritama i algoritama lokalne
pretrage u SAT i SMT rešavačima

Rezime: U ovom radu se razmatraju mogućnosti kombinovanja egzaktnih algorita-
ma i algoritama lokalne pretrage u okviru SAT i SMT rešavača. Jedna takva tehnika
predstavljena je u radu Caija i Zanga na SAT konferenciji 2021. godine. Pored de-
taljnog prikaza ove tehnike u slučaju SAT rešavača, razmatrana je i adaptacija ove
tehnike u kontekstu SMT rešavača. Tehnika je implementirana u okviru SMT reša-
vača ArgoSMT i otvorenog je koda. Evaluacija je data za više konfiguracija rešavača
radi pronalaženja pogodne postavke promenljivih.

Ključne reči: SAT rešavač, SMT rešavač, algoritam lokalne pretrage, CDCL algo-
titam

Sadržaj

1 Uvod 1

2 Osnove 4

3 Egzaktni algoritmi 6
3.1 CDCL algoritam . 6
3.2 Algoritam CDCL(T) . 11

4 SAT rešavači zasnovani na lokalnoj pretrazi 14
4.1 GSAT . 14
4.2 WalkSAT . 15

5 Ugradnja lokalne pretrage u CDCL algoritam 17
5.1 Opis postupka ugradnje lokalne pretrage u CDCL algoritam 17
5.2 Uticaj lokalne pretrage na heuristike grananja CDCL algoritma . . . 20

6 Ugradnja lokalne pretrage u CDCL(T) algoritam 22

7 Implementacija i evaluacija 27
7.1 Implementacija . 27
7.2 Evaluacija . 31

8 Zaključak 35

Bibliografija 36

v

Glava 1

Uvod

Problem iskazne zadovoljivosti (engl. Boolean satisfiability problem), u nastavku
SAT, je fundamentalan problem u računarstvu, a algoritmi za njegovo rešavanje su
zabeležili izuzetan napredak tokom prethodnih decenija. Problem podrazumeva ispi-
tivanje da li za datu iskaznu formulu postoje vrednosti iskaznih promenljivih za koje
je ta formula tačna. Formula je podrazumevano zadata u konjuktivnoj normalnoj
formi (KNF). Na primer formula:

px1 _ x2q ^ p␣x2q ^ p␣x1 _ x3q

je tačna ako su promenljive x1 i x3 tačne, a promenljiva x2 netačna. SAT je prvi
problem za koji je dokazano da je NP-kompletan (Kuk-Levinova teorema [4, 7]). To
znači da su svi problemi u klasi složenosti NP najviše jednako teški za rešavanje kao
i SAT.

Alati koji implementiraju procedure za rešavanje SAT problema nazivaju se
SAT rešavači. Moderni SAT rešavači su po pravilu zasnovani na CDCL algorit-
mu (engl. Conflict-Driven Clause Learning) [6]. Pored teorijskog značaja, njihova
primena je posebno značajna u verifikaciji hardvera i softvera, gde omogućavaju
otkrivanje grešaka u dizajnu digitalnih kola, procesora i kompajlera, čime se spreča-
vaju skupi propusti u industrijskoj proizvodnji. Pored toga, SAT rešavači se koriste
u problemima planiranja i raspoređivanja, kao što su kreiranje školskih rasporeda,
optimizacija proizvodnih procesa ili raspoređivanje avionskih letova. Zahvaljujući
svojoj snazi, SAT rešavači nalaze primenu i u generisanju test slučajeva, dijagno-
stici sistema, pa čak i u rešavanju logičkih slagalica i igara (npr. sudoku), čime
se demonstrira njihova široka primenljivost i fleksibilnost. Neki od poznatijih SAT

1

GLAVA 1. UVOD

rešavača su MiniSAT1, Glucose2, Lingeling3, CaDiCaL4, itd.
SMT problem (engl. Satisfiability modulo theories) je problem ispitivanja da li

je data formula logike prvog reda zadovoljiva u odnosu na datu teoriju T, odnosno
da li postoji model teorije T u kojoj je data formula tačna. Teorije koje se obično
razmatraju u praksi uključuju realnu i celobrojnu aritmetiku, teoriju nizova, listi,
bitvektora, stringova, induktivnih tipova podataka, i sl. SMT rešavači su alati koji
implementiraju procedure za rešavanje SMT problema. Najčešće su zasnovani na
kombinaciji SAT rešavača zasnovanog na CDCL algoritmu i specifičnih procedu-
ra odlučivanja za datu teoriju (jedna ovakva arhitektura je poznata pod nazivom
CDCL(T) [6]). Imaju široku primenuu u verifikaciji softverskih sistema, naročito
u domenima gde je kritična bezbednost, poput avionike, automobilskih sistema i
medicinskih uređaja. SMT rešavači omogućavaju proveru svojstava koda, detekciju
potencijalnih grešaka kao što su prekoračenje bafera ili deljenje nulom, ali i formalnu
verifikaciju sigurnosnih protokola i kriptografskih algoritama. Osim toga, koriste se
i u optimizacionim problemima u industriji, gde kombinacija logičkih i numeričkih
uslova omogućava efikasno raspoređivanje resursa i planiranje proizvodnje. Zahva-
ljujući toj kombinaciji logike i teorija, SMT rešavači su postali neizostavan alat u
savremenom softverskom inženjerstvu i formalnim metodama.

Algoritmi lokalne pretrage (engl. local search) su se pokazali veoma efikasnim u
rešavanju mnogih složenih problema optimizacije u različitim domenima. Oni itera-
tivno poboljšavaju tekuće rešenje tako što u njega unose lokalne izmene i prihvataju
promene samo ako dovode do boljeg rešenja. Algoritmi lokalne pretrage se uspešno
koriste i za rešavanje SAT problema. Za razliku od egzaktnih algoritama (poput
CDCL algoritma), algoritmi lokalne pretrege su nekompletni, tj. ne garantuju da će
rešenje biti pronađeno, ali u praksi često brže dolaze do zadovoljavajuće valuacije
od egzaktnih algoritama. Takođe, algoritmi lokalne pretrage nisu u stanju da utvrde
nezadovoljivost formule. Neki od značajnijih algoritama lokalne pretrage za SAT
problem su GSAT i WalkSAT [2].

U radu Caija i Zanga [10] predložen je novi algoritam za rešavanje SAT problema
koji kombinuje CDCL algoritam sa algoritmima lokalne pretrage. CDCL algoritam
je potpuna metoda pretraživanja koja funkcioniše tako što obilazi stablo pretrage
i uči nove klauze iz konflikata na koje naiđe. Lokalna pretraga je, s druge strane,

1http://minisat.se/
2https://www.labri.fr/perso/lsimon/research/glucose/
3https://fmv.jku.at/lingeling/
4https://fmv.jku.at/cadical/

2

GLAVA 1. UVOD

nepotpuna metoda pretraživanja koja iterativno poboljšava dato rešenje unošenjem
malih izmena u njega. Predloženi algoritam iz rada [10] kombinuje prednosti obe
metode tako što koristi CDCL algoritam kao glavni algoritam pretrage, a lokalnu
pretragu koristi za dalje poboljšanje valuacije koju je pronašao CDCL algoritam, u
cilju bržeg pronalaženja zadovoljavajuće valuacije.

U sprovedenim eksperimentima autori pokazuju da proširenje CDCL algoritma
tehnikama lokalne pretrage dovodi do značajnih poboljšanja u performansama. Na
skupu instanci sa SAT takmičenja 2020, modifikovana verzija rešavača Glucose5,
rešila je 62 dodatne instance (oko 15,5% više), dok je Maple-DL6 rešio 67 dodatnih
instanci (oko 16,8% više) u poređenju sa originalnim verzijama. I rešavač Kissat7

beleži dobitak od 10 dodatnih instanci (oko 2,5%). Poboljšanja su vidljiva i po vre-
menskoj efikasnosti, merenoj PAR2 metrikom: za Maple-DL prosečno penalizovano
vreme rešavanja smanjeno je sa 5835s na 4171s, za glucose sa 6494s na 4977.9s, dok
je za Kissat smanjeno sa 4048s na 3896s.

U ovom radu dat je detaljni opis pomenute tehnike ugradnje lokalne pretrage u
CDCL algoritam, predstavljene u radu [10]. Glavni doprinos ovog rada je adaptacija
ove tehnike u kontekstu SMT rešavača. Tehnika je implementirana u okviru SMT
rešavača ArgoSMT [3] i otvorenog je koda. Rad takođe sadrži i evaluaciju dobijene
implementacije na korpusima instanci iz SMT-LIB biblioteke [1].

Nastavak ovog rada je organizovan na sledeći način. U glavi 2 uvedene su osnov-
ne definicije, pojmovi i oznake neophodne za razumevanje pomenutih tehnika. U
glavi 3 biće dat opis egzaktnih algoritama za rešavanje SAT problema (CDCL al-
goritam) i SMT problema (CDCL(T) algoritam). U glavi 4 se nalazi opis osnovnih
algoritma lokalne pretrage za rešavanje SAT problema, WalkSAT i njegova preteča
GSAT. U poglavlju 5 detaljno je predstavljena tehnika ugradnje lokalne pretrage u
CDCL algoritam, dok se u poglavlju 6 razmatra njena primena pri ugradnji lokalne
pretrage u CDCL(T) algoritam, po ugledu na opis iz rada [10]. U glavi 7 je dat opis
implementacije ove tehnike u okviru SMT rešavača ArgoSMT i evaluacija na SMT
instancama, kao i diskusija dobijenih rezultata. Na kraju, u glavi 8, kao zaključak,
dat je osvrt na postignute rezultate u ovom radu.

5https://www.labri.fr/perso/lsimon/research/glucose/
6https://maplesat.github.io/solvers.html
7https://fmv.jku.at/kissat/

3

Glava 2

Osnove

U ovom delu rada biće date osnovne definicije, pojmovi i oznake potrebne za
razumevanje ostatka rada.

SAT problem

Neka je dat prebrojivi skup iskaznih promenljivih. Literal (engl. literal) je ili
promenljiva v ili njena negacija ␣v. Suprotan literal literalu l označava se sa l.
Ukoliko je literal l promenljiva v, njemu suprotan literal je negacija promenljive v,
odnosno ␣v, a ukoliko je literal l negacija promenljive v, njemu suprotan literal je
upravo v. Klauza (engl. clause) predstavlja disjunkciju literala. KNF formulu čini
konjukcija klauza i biće označavana sa F .

Pod valuacijom podrazumevamo pridruživanje istinitosnih vrednosti (tačno, ne-
tačno) iskaznim slovima. Ukoliko je promenljiva v tačna u datoj valuaciji, tada je
␣v netačno u toj valuaciji i obrnuto. Klauza je tačna u datoj valuaciji ako je u njoj
tačan bar jedan njen literal. KNF formula je tačna u datoj valuaciji ako su sve nje-
ne klauze tačne u toj valuaciji. KNF formula F je zadovoljiva ako postoji bar jedna
valuacija u kojoj je F tačna, a u suprotnom je nezadovoljiva. Problem ispitivanja
zadovoljivosti KNF formule naziva se SAT problem. Ovaj problem je NP kompletan
[5]. Alati koji implementiraju procedure odlučivanja za SAT problem nazivaju se
SAT rešavači.

SMT problem

Signatura (ili jezik) Σ se sastoji iz skupa funkcijskih i predikatskih simbola da-
tih arnosti. Bazni term je ili funkcijski simbol arnosti 0 (konstanta) ili funkcijski

4

GLAVA 2. OSNOVE

simbol arnosti n ą 0 primenjen na n baznih termova. Bazni atom prvog reda je ili
predikatski simbol arnosti 0, ili predikatski simbol arnosti n ą 0 primenjen na n

baznih termova. Literal prvog reda je ili atom prvog reda, ili njegova negacija. Kla-
uza prvog reda je disjunkcija literala prvog reda. Bazna KNF formula prvog reda je
konjunkcija baznih klauza prvog reda. Struktura M se sastoji iz nepraznog domena
D i mapiranja koje funkcijskim simbolima iz Σ pridružuje funkcije odgovarajuće
arnosti nad D, dok predikatskim simbolima pridružuje relacije odgovarajuće arnosti
nad D. Struktura M indukuje interpretaciju termova i atoma nad Σ na uobiča-
jen način, pri čemu se termovi interpretiraju kao elementi skupa D, dok se atomi
interpretiraju kao istinitosne vrednosti (tačno, netačno). Sada se istinitosne vred-
nosti literala, klauze i KNF formule u strukturi M definišu analogno kao u slučaju
iskazne logike. Pod teorijom prvog reda T nad Σ podrazumevamo skup struktura
nad Σ koje nazivamo modelima teorije T . Formula F je zadovoljiva u teoriji T (ili
T -zadovoljiva) ako postoji model M teorije T u kom je F tačna, u suprotnom je
F T -nezadovoljiva. Problem ispitivanja zadovoljivosti formule u teoriji T nazivamo
SMT problem za teoriju T . Alati koji implementiraju procedure za rešavanje SMT
problema nazivaju se SMT rešavači.

5

Glava 3

Egzaktni algoritmi

U ovoj glavi će biti prikazani egzaktni algoritmi koji se dominantno koriste u
SAT i SMT rešavačima. Algoritam zasnovan na učenju klauza vođenom konfliktima
(engl. conflict driven clause learning (CDCL)) predstavlja napredan algoritam na
kome je zasnovana većina savremenih SAT rešavača. Ovaj algoritam predstavlja
unapređenje Davis-Putnam-Logemann-Loveland (DPLL) algoritma i biće detaljno
razmotren u poglavlju 3.1.

S druge strane, moderni SMT rešavači su zasnovani na CDCL(T) algoritmu, koji
kombinuje SAT rešavač zasnovan na CDCL algoritmu sa procedurama odlučivanja
za teorije prvog reda poput aritmetike, bit vektora, i sl. CDCL(T) algoritam će
detaljno biti razmotren u glavi 3.2.

3.1 CDCL algoritam

U ovom poglavlju razmatra se CDCL algoritam koji predstavlja najčešće kori-
šćen egzaktni algoritam za rešavanje SAT problema. Glavni deo algoritma pokušava
da inkrementalno izgradi zadovoljavajuću valuaciju mehanizmom odlučivanja i pro-
pagacija, uz detekciju konflikata (tj. klauza koje su netačne u tekućoj parcijalnoj
valuaciji). U slučaju da se pojavi konflikt, tada se vrši analiza konflikata, čiji je re-
zultat učenje klauze koja je stvarni uzrok konflikta i nehronološko vraćanje unazad
na osnovu naučene klauze. Navedene komponete algoritma detaljnije su opisane u
narednim odeljcima.

Označimo sa α parcijalnu valuaciju koja se formira u okviru SAT rešavača. Literal
l je tačan u valuaciji α, sa oznakom α |ù l, ukoliko je element valuacije α, a netačan u
valuaciji α, sa oznakom α |ù ␣l, ukoliko je njemu suprotan literal element valuacije

6

GLAVA 3. EGZAKTNI ALGORITMI

α. Ukoliko literal l nije ni tačan ni netačan u valuaciji α , kažemo da je nedefinisan
u valuaciji α, sa oznakom α * l,␣l. Klauza C je tačna u valuaciji α, sa oznakom
α |ù C, ukoliko postoji bar jedan literal l P C tako da α |ù l, a netačna u valuaciji
α, sa oznakom α |ù ␣C, ukoliko za svaki literal l P C važi α |ù ␣l. Netačne klauze
u valuaciji često se u praksi nazivaju konfliktnim klauzama. Formula F je tačna
u valuaciji α, sa oznakom α |ù F , ukoliko za svaku klauzu C P F važi α |ù C, a
netačna u valuaciji α , sa oznakom α |ù ␣F , ukoliko postoji C P F takva da važi
α |ù ␣C. Za formulu i klauzu koje nisu ni tačne ni netačne u valuaciji α kažemo da
su nedefinisane u α.

Parcijalna valuacija će u okviru SAT rešavača biti predstavljena kao stek na
kome se nalaze literali koje smatramo tačnim u tekućoj parcijalnoj valuaciji. Ovaj
stek se u literaturi obično naziva trag (engl. trail). Trag je izdeljen na nivoe odlu-
čivanja sa početnom numeracijom 0, pri čemu poslednji nivo nazivamo tekući nivo
odlučivanja. Literali odlučivanja su literali kojima počinju nivoi odlučivanja (sem
nultog nivoa) i koji se nalaze na steku kao rezultat proizvoljne odluke algoritma
(tj. predstavljaju tačke grananja). Preostali literali na svakom od nivoa odlučivanja
se nazivaju izvedeni literali, a nastali su kao posledica prethodno donetih odluka,
mehanizmom propagacije. Nivoi odlučivanja su uvedeni da bi se omogućilo vraćanje
unazad, a literali odlučivanja su tačke u koje algoritam može da se vrati i izabere
alternativni put pretrage.

Struktura CDCL algoritma data je u Algoritmu 1.

7

GLAVA 3. EGZAKTNI ALGORITMI

Algoritam 1 CDCL algoritam, CDCLpF, αq

1: dl Ð 0;
2: if UnitPropagationpF, αq “ CONFLICT then
3: return UNSAT ;
4: end if
5: while D nedefinisana promenljiva v u tragu α do
6: xÐ PickBranchV arpF, αq;
7: v Ð PickBranchPolaritypF, x, αq;
8: dl Ð dl ` 1;
9: α.pushpx, vq;

10: if UnitPropagationpF, αq “ CONFLICT then
11: bl Ð ConflictAnaysisAndLearningpF, αq;
12: if bl ă 0 then
13: return UNSAT ;
14: else
15: BacktrackpF, α, blq;
16: dl Ð bl;
17: end if
18: end if
19: end while
20: return SAT

U liniji 2, odnosno prvi if vrši iscrpnu jediničnu propagaciju (o kojoj će biti reči
u narednom odeljku), na nultom nivou odlučivanja. Ako dođe do konflikta odmah
se prijavljuje UNSAT, tj. ne postoji zadovoljavajuća valuacija za datu ulaznu for-
mulu. Zatim se ulazi u while petlju u kojoj se ostaje sve dok sve promenljive ne
dobiju vrednost. Ukoliko se to postigne, a da pritom ne dođe do konflikta, algoritam
vraća SAT nakon petlje. Pomoću funkcija PickBranchV ar i PickBranchPolarity

se biraju promenljiva i njen polaritet koje se dodaju na trag u liniji 9, dok se u
liniji 8 povećava tekući nivo odlučivanja. Ovim povećanjem se postiže da dodati
literal zapravo bude literal odlučivanja. Nakon postavljanja literala odlučivanja ide
se u naredni cikus jedinične propagacije, a ako se tom prilikom desi konflikt, on se
analizira u liniji 11 pozivom funkcije ConflictAnaysisAndLearning koja određuje
nivo odlučivanja na kome se nalazi pravi uzrok konflikta, a vraćanjem na ovaj ni-
vo izbegava se nepotrebno pretraživanje neperspektivnih grana prostora pretrage.
Takođe, analiza konflikta kao rezultat ima klauzu povratnog skoka koja objašnjava
prirodu konflikta i koja je posledica klauza formule F, a koja se dodaje u skup klau-
za, čime se sprečavaju slični konflikti u budućnosti. Ako se konflikt ne prijavi ide se
na narednu iteraciju while petlje i postupak izbora literala odlučivanja se ponavlja.

8

GLAVA 3. EGZAKTNI ALGORITMI

Jedinična propagacija

Jedinična propagacija (engl. Unit Propagation) je mehanizam koji omogućava
efikasno smanjenje prostora pretrage tako što identifikuje literale koji moraju bi-
ti tačni i dodaje ih na trag. Algoritam analizira skup klauza i identifikuje klauze
koje sadrže samo jedan nedefinisani literal, dok su ostali literali netačni u tekućoj
parcijalnoj valuaciji. Ove klauze nazivamo jediničnim klauzama. Za svaku jediničnu
klauzu, nedefinisani literal dobija istinitosnu vrednost „tačno”, kako bi klauza bila
zadovoljena. Ova dodela se propagira kroz formulu.

Dok se istinitosne vrednosti propagiraju, algoritam vrši dedukciju identifikujući
dodatne jedinične klauze koje proističu iz dodela napravljenih u prethodnim koraci-
ma. Na taj način se uspostavlja lanac dedukcija koji sužava prostor mogućih dodela
istinitosnih vrednosti i time smanjuje prostor pretrage.

Ako se javi konflikt tokom procesa jedinične propagacije, tj. ako neka od klauza
postane netačna u tekućoj parcijalnoj valuaciji, algoritam prelazi u fazu analize
konflikta.

Algoritam koji se tipično koristi za pronalaženje jediničnih klauza je shema dva
posmatrana literala (engl. two watched literals scheme). U svakoj klauzi se biraju
dva literala koja nisu netačna u trenutnoj valuaciji. Za svaki literal se održava lista
svih klauza u kojima je on posmatrani literal. Kada neki literal postane netačan u
tekućoj parcijalnoj valuaciji obilazi se njegova lista posmatranih klauza i za svaku
klauzu traži se alternativni posmatrani literal. Ako se nađe novi posmatrani literal
ta klauza se dodaje na njegovu listu posmatranih klauza. U suprotnom postoje
dve mogućnosti: da je drugi posmatrani literal takođe netačan u tekućoj valuaciji
(prijavljuje se konflikt) ili da je drugi posmatrani literal nedefinisan (taj literal će
biti propagiran).

Proces donošenja odluka

Jedan od važnih elemenata CDCL algoritma je proces donošenja odluka, gde se
vrši izbor promenljive odlučivanja i njenog polariteta (funkcije pickBranchV ar i
pickBranchPolarity u algoritmu 1).

Algoritam koristi heuristiku kako bi izabrao promenljivu kojoj će se dodeliti
vrednost. Heuristike donošenja odluka mogu se zasnivati na različitim kriterijumi-
ma, kao što su najviše pojavljivanja u klauzama, najmanje pojavljivanja ili neka
druga metrika koja odgovara karakteristikama problema. Jedna od često korišćenih

9

GLAVA 3. EGZAKTNI ALGORITMI

heuristika u CDCL algoritmu je VSIDS (engl. Variable State Independent Decaying
Sum) heuristika [9]. Ona dodeljuje bodove promenljivama na osnovu njihovog uče-
šća u konfliktima tokom pretrage. Promenljive koje su učestvovale u većem broju
konflikata u skorije vreme dobijaju više bodova i prioritetno se razmatraju pri do-
nošenju odluka. Ova heuristika omogućava algoritmu da se fokusira na promenljive
koje su verovatno ključne za konflikte i da izbegne beskorisno pretraživanje.

Nakon izbora promenljive, algoritam dodeljuje polaritet promenljivoj, a jedna od
najčešćih strategija izbora je strategija sačuvanog polariteta, kod koje se bira onaj
polaritet koju je promenljiva poslednji put imala u prethodnom toku pretrage.

Analiza konflikata, učenje klauza i povratni skokovi

Analiza konflikata (engl. conflict analysis) je komponenta CDCL algoritma ko-
ja se koristi za identifikovanje uzroka konflikata i učenje iz njih. Kada se tokom
jedinične propagacije otkrije konflikt, algoritam postupkom rezolucije, polazeći od
konfliktne klauze, konstruiše klauzu koja objašnjava pravi uzrok konflikta. U pita-
nju je iterativni postupak tokom koga se polazna konfliktna klauza transformiše na
sledeći način: u svakom koraku, identifikuje se izvedeni literal iz trenutne konfliktne
klauze koji je poslednji poništen na tragu α i eliminiše se iz konfliktne klauze pri-
menom rezolucije sa klauzom iz koje je taj literal dobijen jediničnom propagacijom
(ovu klauzu nazivamo objašnjenje propagiranog literala). Ovaj postupak se ponavlja
do dostizanja tačke jednoznačne implikacije (engl. unique implication point (UIP)),
u kojoj važi da su svi literali iz trenutne konfliktne klauze osim jednog poništeni na
tragu α na nivou manjem ili jednakom nekom m, dok je samo jedan literal poništen
na nekom nivou većem od m (tipično na tekućem nivou odlučivanja).

Klauza dobijena na kraju opisanog postupka analize konflikta se naziva klauza
povratnog skoka. Ova klauza se koristi za određivanje nivoa povratnog skoka, a ta-
kođe se dodaje u tekući skup klauza, kako bi se izbegli slični konflikti u budućnosti.
Ovaj proces dodavanja klauze povratnog skoka se naziva učenje klauza.

Povratni skok (engl. Backjump) je karakteristika CDCL algoritma koja omo-
gućava izbegavanje neperspektivnih grana prostora pretrage. Na osnovu konfliktne
klauze, algoritam identifikuje nivo odlučivanja na tragu na kome se nalazi stvarni
uzrok konflikta. Ovaj nivo se naziva nivo povratnog skoka. U pitanju je minimalni
nivo na kome je klauza povratnog skoka jedinična klauza. Algoritam se vraća na ovaj
nivo i na osnovu klauze povratnog skoka vrši propagaciju odgovarajućeg literala.

10

GLAVA 3. EGZAKTNI ALGORITMI

3.2 Algoritam CDCL(T)

SMT rešavač zasnovan na CDCL(T) arhitekturi se sastoji iz SAT rešavača za-
snovanog na CDCL algoritmu i teorijskog rešavača koji implementira proceduru
odlučivanja za ispitivanje zadovoljivosti konjunkcije literala u teoriji T. Struktu-
ra CDCL(T) algoritma prikazana je u algoritmu 2, a dodatne metode teorijskog
rešavača koje se pozivaju iz SAT rešavača date su u nastavku:

• newLevel(): poziva se svaki put kada se na tragu uspostavi novi nivo odluči-
vanja. Ovo je neophodno, kako bi teorijski rešavač mogao da zapamti svoje
interno stanje na kraju svakog nivoa odlučivanja. Zapamćeno stanje se kasnije
može rekonstruisati, u slučaju vraćanja unazad.

• assertLiteral(l): poziva se svaki put kada se na trag postavi novi literal, kako
bi teorijski rešavač bio informisan o promeni stanja parcijalne valuacije.

• backjump(m): poziva se pri svakom povratnom skoku. Ovim se teorijski rešavač
informiše o promeni stanja parcijalne valuacije i ujedno se nalaže teorijskom
rešavaču da se vrati na stanje u kome je bio na kraju nivoa m.

• checkConflict(R): nalaže teorijskom rešavaču da ispita da li u tekućoj parci-
jalnoj valuaciji postoji konflikt u teoriji. Ukoliko je odgovor potvrdan, teorij-
ski rešavač vraća podskup literala R sa traga α takav da je R (T K. Ovaj
skup nazivamo objašnjenje teorijskog konflikta i njegovom negacijom dobija
se konfliktna klauza od koje započinje analiza konflikta. Ova procedura se
obično poziva nakon završenog ciklusa jedinične propagacije, pod pretpostav-
kom da isti nije proizveo konflikt. U algoritmu se poziva u okviru funkcije
TheoryPropagation - linija 6.

• checkTheoryPropagation(L): ovom procedurom se nalaže teorijskom rešavaču
da proveri da li postoje literali nedefinisani u tekućoj parcijalnoj valuaciji,
a koji u teoriji T slede iz literala koji se nalaze na tragu. Ukoliko postoje,
skup L svih takvih literala se vraća SAT rešavaču koji ih postavlja na trag na
tekućem nivou odlučivanja. Opisani postupak se naziva teorijska propagacija i
predstavlja dodatni mehanizam zaključivanja, analogan mehanizmu jedinične
propagacije, s tim što se ovoga puta radi o rezonovanju u teoriji. Ova procedura
se obično poziva nakon što se utvrdi da ne postoji konflikt u teoriji. U algoritmu
se poziva u okviru funkcije TheoryPropagation - linija 6.

11

GLAVA 3. EGZAKTNI ALGORITMI

• explainLiteral(l, E): nalaže teorijskom rešavaču da objasni literal l koji je rani-
je postavljen na trag mehanizmom teorijske propagacije. Objašnjenje teorijske
propagacije E predstavlja bilo koji skup literala sa traga α koji prethode lite-
ralu l takav da važi E (T l. Ova procedura se poziva tokom analize konflikta,
kad god je potrebno iz konfliktne klauze eliminisati literal koji je nastao te-
orijskom propagacijom (rezolucija se sprovodi nad klauzom ␣E _ l čime se
eliminiše literal l iz tekuće konfliktne klauze). U algoritmu se poziva u okviru
funkcije AnalyzeTheoryConflict - linija 13.

12

GLAVA 3. EGZAKTNI ALGORITMI

Algoritam 2 CDCL(T) algoritam
1: dl Ð 0;
2: while true do
3: iÐ 0;
4: pα, confq Ð UnitPropagationpF, αq;
5: while i ă num_t_solvers OR conf “ CONFLICT do
6: pα, confq Ð TheoryPropagationpF, α, iq;
7: iÐ i` 1;
8: end while
9: if conf “ CONFLICT AND check_conflict “ true then

10: if dl “ 0 then
11: return UNSAT ;
12: end if
13: plearned_clause, blq Ð AnalyzeTheoryConflictpconf, iq;
14: F Ð F Y tlearned_clauseu;
15: Backtrackpα, blq, dl Ð bl;
16: j Ð 0;
17: while j ă num_t_solvers do
18: theory_solverrjs Ñ backjumppblq;
19: j Ð j ` 1;
20: end while
21: continue;
22: end if
23: if IsCompleteTrailpα, F q then
24: break;
25: end if
26: decision_var Ð ChooseDecisionV ariablepα, F q;
27: αÐ α Y tdecision_var “ TRUE{FALSEu;
28: j Ð 0;
29: while j ă num_t_solvers do
30: theory_solverrjs Ñ newLevelpq;
31: theory_solverrjs Ñ assertLiteralpdecision_varq;
32: j Ð j ` 1;
33: end while
34: end while
35: return SAT ;

13

Glava 4

SAT rešavači zasnovani na lokalnoj
pretrazi

GSAT i WalkSAT su popularni algoritmi lokalne pretrage koji se koriste za re-
šavanje SAT problema i u ovom poglavlju će biti više reči o njima.

4.1 GSAT

GSAT algoritam (algoritam 3) je randomizovani algoritam lokalne pretrage koji
ima za cilj pronalaženje zadovoljavajuće valuacije za datu formulu koja je u KNF
formi. Algoritam počinje sa nekom početnom valuacijom, koja može biti nasumična
ili zasnovana na nekom heurističkom pristupu. Algoritam iterativno pokušava da
poboljša trenutnu valuaciju tako što menja vrednost nasumično izabrane promen-
ljive sa ciljem da maksimizuje broj zadovoljenih klauza formule. GSAT nastavlja sa
iteracijama sve dok ne pronađe zadovoljavajuću valuaciju (sve klauze su zadovolje-
ne), ili dok se ne ispuni unapred definisani uslov zaustavljanja (maksimalan broj
iteracija ili vremensko ograničenje).

Prilikom menjanja vrednosti, algoritam može da ima bočna kretanja (engl. si-
deways moves). To su koraci pri kojima nema povećanja broja zadovoljenih klauza
formule. Kada nema promene u broju zadovoljenih klauza nakon promene vrednosti
izabrane promenljive, to znači da je algoritam došao u lokalni maksimum, takozvani
plato (engl. plateau) jer trenutno ne može da nađe bolje rešenje. Plato može biti
privremeno stanje ili može trajati tokom celog izvršavanja algoritma. Ovo se smatra
glavnim problemom u GSAT algoritmu jer sprečava dalje poboljšanje valucije i može
dovesti do suboptimalnog rešenja. Kada algoritam zapadne u plato, postoji potreba

14

GLAVA 4. SAT REŠAVAČI ZASNOVANI NA LOKALNOJ PRETRAZI

za mehanizmima ili heuristikama koje mogu prevazići ovaj problem i nastaviti sa
traganjem za boljim rešenjem. U većini slučajeva plato vodi ka drugom platou, dok
sa velikim brojem promenljivih algoritam ima manju šansu da se zaglavi u lokalnom
minimumu, ali postoji mogućnost trošenja velike količine vremena na individualnim
platoima.

Algoritam 3 GSAT(F)
for i “ 1 to MAX_TRIES do

σ Ð slučajno generisana valuacija
for j “ 1 to MAX_FLIPS do

if σ zadovoljava F then
return σ

end if
v Ð promena vrednosti promenljive koja rezultuje najvećim smanjenjem

broja nezadovoljenih klauza
Promeni vrednost v u σ

end for
end for
return FAIL

4.2 WalkSAT

WalkSAT algoritam (algoritam 4) je algoritam lokalne pretrage za SAT problem
nastao kao poboljšanje GSAT algoritma. Za razliku od prethodnog algoritma, Walk-
SAT bira promenljivu iz slučajno izabrane klauze koja je nezadovoljena u tekućoj
valuaciji. Nakon izabrane nezadovoljene klauze, algoritam primenjuje slobodan po-
tez (eng. freebie move), tj. bira promenljivu (iz prethodno slučajno izabrane klauze)
čijom promenom se neće povećati broj nezadovoljenih klauza. Ideja iza slobodnih
poteza je da se koristi informacija o strukturi problema i klauzama kako bi se iden-
tifikovali koraci koji vode ka poboljšanju rešenja.

Ako takva promenljiva ne postoji u klauzi, algoritam će sa određenom verovatno-
ćom p na slučajan način izabrati promenljivu iz izabrane klauze, dok sa verovatno-
ćom 1´p bira promenljivu iz izabrane klauze čija bi promena dovela do minimalnog
povećanja broja nezadovoljenih klauza (ova vrednost se obično naziva break-count
vrednost). Pogodna vrednost parametra p se dobija eksperimentalno. Na primer, za
slučajno generisane 3-SAT probleme utvrđeno je da je ta vrednost 0.57 [8]

15

GLAVA 4. SAT REŠAVAČI ZASNOVANI NA LOKALNOJ PRETRAZI

Algoritam 4 WalkSAT(F)
for i “ 1 to MAX_TRIES do

σ Ð slučajno generisana valuacija
for j “ 1 to MAX_FLIPS do

if σ zadovoljava F then
return σ

end if
C Ð slučajno izabrana nezadovoljena klauza
if D promenljiva x P C za koju je break-count “ 0 then

v Ð x //slobodan potez
else

Sa verovatnoćom p: //potez nasumičnog hoda
v Ð a promenljiva iz C izabrana slučajno

Sa verovatnoćom 1´ p: //pohlepan potez
v Ð a promenljiva iz C sa najmanjim break-count

end if
Promeni vrednost v u σ

end for
end for
return FAIL

16

Glava 5

Ugradnja lokalne pretrage u CDCL
algoritam

Nakon opisa CDCL algoritma u glavi 3 i algoritama lokalne pretrage u glavi 4
postavljeni su temelji za razumevanje postupka ugradnje algoritama lokalne pre-
trage u CDCL algoritam, na način na koji je to opisano u radu [10], a što će biti
predmet razmatranja u ovoj glavi. Ideja je da se koristi CDCL algoritam kako bi bila
pronađena pogodna valuacija na koju bi zatim bio primenjen algoritam lokalne pre-
trage. Pretpostavka je da bi za tako formiranu valuaciju bilo potrebno manje koraka
u algoritmu lokalne pretrage za pronalaženje zadovoljavajuće valuacije. Ako lokalna
pretraga ne nađe zadovoljavajuću valuaciju, CDCL algoritam nastavlja pretragu sa
mesta gde je zaustavljen.

5.1 Opis postupka ugradnje lokalne pretrage u

CDCL algoritam

Postupak ugradnje lokalne pretrage u CDCL algoritam prikazan je u algoritmu 5.
Kada CDCL algoritam tokom pretrage dođe do čvora sa parcijalnom valuacijom
koja zadovoljava neke unapred zadate kriterijume (a koji će biti precizno opisani
u nastavku) pretraga se zaustavlja, a taj čvor se pamti kako bi se pretraga kasnije
mogla nastaviti. Algoritam ulazi u režim rada bez vraćanja unazad, koji koristi
jediničnu propagaciju i postojeću heuristiku grananja da dopuni ostatak valuacije
bez vraćanja unazad, potpuno ignorišući eventualne konflikte. Nakon formiranja
potpune valuacije, poziva se lokalna pretraga koja polazeći od te valuacije pokušava

17

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

da pronađe zadovoljavajuću valuaciju. Ako lokalna pretraga ne uspe da pronađe
model za određeno vreme, algoritam se vraća na osnovnu CDCL pretragu od čvora
u kome je CDCL algoritam bio zaustavljen. Slika 5.1 ilustruje opisani proces.

Parcijalna valuacija α ispunjava kriterijum za prelazak u režim lokalne pretrage
ako ispunjava bar jedan od sledeća dva uslova:

• |α|

|V |
ą p , gde je α parcijalna valuacija u kojoj nije identifikovan konflikt, |V |

ukupan broj promenljivih, a p parametar sa vrednošću između 0 i 1. Vrednost
ovog parametra se određuje eksperimentalno (u radu [10] je korišćena vrednost
0.4, dobijena na osnovu preliminarnih eksperimenata na slučajnom uzorku
instanci sa SAT takmičenja).

• |α|

|α_longest|
ą q, gde je α_longest najduža do tada pronađena parcijalna valu-

acija, a q parametar sa vrednošću između 0 i 1. Vrednost ovog parametra se
takođe određuje eksperimentalno (u radu [10] je korišćena vrednost 0.9.)

Slika 5.1: Grafički prikaz relaksacije CDCL-a, slika je uzeta iz rada [10]

Jedinična propagacija koja se koristi za upotpunjavanje parcijalne valuacije za
lokalnu pretragu je identična kao za osnovni CDCL algoritam uz ignorisanje even-
tualnih konflikata. Pravilo odlučivanja se primenjuje na promenljive koje ostanu
nedefinisane nakon iscrpne primene jedinične propagacije. Nakon primene pravila
odlučivanja (u skladu sa postojećim heuristikama grananja) ponovo se pokreće je-
dinična propagacija. Ovaj postupak se ponavlja dok se ne dobije potpuna valuacija.

18

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

Algoritam 5 CDCL sa ugrađenom lokalnom pretragom
1: dl Ð 0;
2: αÐ 0;
3: α_longestÐ 0;
4: if UnitPropagationpF, αq “ CONFLICT then
5: return UNSAT ;
6: end if
7: while D nedefinisana promenljiva v u tragu α do
8: xÐ PickBranchV arpF, αq;
9: v Ð PickBranchPolaritypF, αq;

10: dl Ð dl ` 1;
11: α.pushpx, vq;
12: if UnitPropagationpF, αq “ CONFLICT then
13: bl Ð ConflictAnaysispF, αq;
14: if bl ă 0 then
15: return UNSAT ;
16: else
17: α_longestÐ maxpα_longest, αq;
18: BacktrackpF, α, blq, dl Ð bl;
19: end if
20: else if (|α|

|V |
ą p OR |α|

|α_longest|
ą q) then

21: β Ð α;
22: while β is not complete do
23: β Ð PickBranchV arpF, βq;
24: β Ð PickBranchPolaritypF, βq;
25: β.pushpx, vq;
26: UnitPropagationpF, βq;
27: end while
28: if LocalSearchpβ, terminate_conditionq then
29: return SAT
30: end if
31: Updatepα_longest_LS, α_latest_LS, α_best_LSq
32: if Ispunjeni kriterijumi za ponovno pokretanje then
33: BacktrackpF, α, 0q;
34: dl Ð 0;
35: updatePolaritiesFromLocalSearchpq;
36: updateV SIDSScoresFromLocalSearchpq;
37: end if
38: end if
39: end while
40: return SAT

19

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

5.2 Uticaj lokalne pretrage na heuristike grananja

CDCL algoritma

U prethodnom poglavlju je opisan postupak ugradnje lokalne pretrage u CDCL
algoritam, gde CDCL algoritam pomaže lokalnoj pretrazi tako što pruža pogodnu
početnu tačku, nakon koje će lokalna pretraga nastaviti traganje za zadovoljivom
valuacijom. U ovom poglavlju se razmatra na koji način lokalna pretraga može
pomoći CDCL algoritmu, tj. na koji način informacije dobijene lokalnom pretragom
možemo iskoristiti za dalje usmeravanje CDCL pretrage.

Postoje dva načina na koji se to može uraditi. Prvi način podrazumeva upo-
trebu polariteta literala u valuaciji dobijenoj lokalnom pretragom. Ovi polariteti se
koriste za ažuriranje sačuvanih polariteta, na osnovu kojih CDCL pridružuje pola-
ritete literalima odlučivanja. Drugi način je uticaj frekvencije učešća promenljivih u
konfliktima tokom lokalne pretrage na skorove promenljivih u VSIDS heuristici iz-
bora promenljive odlučivanja. U nastavku ovog poglavlja razmatramo obe navedene
tehnike.

Svaki put kada se CDCL rešavač ponovo pokrene (pretraživanje se vraća na nulti
nivo odluke), sačuvani polariteti svih promenljivih se ažuriraju na osnovu valuacije
dobijene lokalnom pretragom. S tim ciljem se beleži najbolja valuacija (sa najmanje
nezadovoljenih klauza) u svakom pokretanju algoritma lokalne pretrage.

Preciznije, razmatraju se sledeće valuacije dobijene u prethodnim pozivima lo-
kalne pretrage:

• α_longest_LS - odnosi se na valuaciju dobijenu lokalnom pretragom u kojoj
se početno rešenje proširuje na osnovu α_longest, pri čemu je α_longest naj-
duža parcijalna valuacija prethodne CDCL pretrage. Kada god se α_longest

ažurira, algoritam ažurira i α_longest_LS.

• α_latest_LS - ovo je valuacija dobijena u poslednjem pozivu lokalne pretrage.

• α_best_LS - najbolja valuacija (sa najmanje nezadovoljenih klauza) od do-
sadašnjih valuacija dobijenih lokalnom pretragom.

Kad god se CDCL ponovo pokrene vrši se ažuriranje sačuvanih polariteta pro-
menljivih na osnovu jedne od gore navedenih valuacija, sa verovatnoćama datim u
tabeli 5.1. Takve promene su uvek dozvoljene, jer ne utiču na korektnost CDCL
algoritma. Opisani proces ažuriranje sačuvanih polariteta pokušava da postigne dva

20

GLAVA 5. UGRADNJA LOKALNE PRETRAGE U CDCL ALGORITAM

Tabela 5.1: Verovatnoća upotrebe različitih valuacija prilikom ažuriranja sačuvanih
polariteta

Ime promenljive α_longest_LS α_latest_LS α_best_LS bez promene
Verovatnoća 20% 65% 5% 10%

cilja - intenziviranje i diversifikaciju: α_longest_LS i α_best_LS služe za nalaženje
dužih parcijalnih valuacija, dok α_latest_LS dodaje diversifikaciju, pošto lokalna
pretraga započinje sa početnim valuacijama na različitim granama. S obzirom na to
koliko se ponovna pokretanja često dešavaju u savremenim SAT rešavačima, ažuri-
ranje polariteta na osnovu lokalne pretrage se vrši prilično često i sa verovatnoćom
od 25% ide u smeru koji odredjuju ili α_longest_LS ili α_best_LS.

Drugi način usmeravanja CDCL pretrage se ogleda u poboljšavanju strategije
izbora promenljive odlučivanja korišćenjem frekvencije učešća promenljive u kon-
fliktima tokom lokalne pretrage, sa akcentom na poslednjem pozivu lokalne pretra-
ge. Za svaku promenljivu njena frekvencija u konfliktima tokom lokalne pretrage
je definisana kao broj koraka u kojima se pojavljuje u bar jednoj nezadovoljenoj
klauzi podeljen sa ukupnim brojem koraka lokalne pretrage, a zatim pomnoženo
sa konstantom koja je ceo broj (u radu [10] je uzeto 100). Vrednost frekvencije
se izračunava prema poslednjem pozivu lokalne pretrage. Nakon svakog ponovnog
pokretanja CDCL algoritma, dobijene frekvencije se koriste za ažuriranje VSIDS
skorova promenljivih, koji se uvećavaju za vrednosti ovih frekvencija. Time se u
budućim grananjima u CDCL algoritmu favorizuju promenljive koje su učestvovale
u većem broju konflikata tokom lokalne pretrage.

21

Glava 6

Ugradnja lokalne pretrage u
CDCL(T) algoritam

U prethodnoj glavi je dat opis ugradnje lokalne pretrage u CDCL algoritam i
uticaj lokalne pretrage na heuristiku grananja CDCL algoritma. U ovoj glavi raz-
matramo ugradnju ove tehnike u SMT rešavače zasnovane na CDCL(T) algoritmu.

Glavni izazov pri ugradnji lokalne pretrage u CDCL(T) algoritam jeste usklađi-
vanje njenog rada sa teorijskim rešavačima. Naime, uloga teorijskih rešavača je da
otkrivaju teorijske konflikte (tj. nezadovoljivost parcijalne valuacije u teoriji) kao i
da otkrivaju teorijske propagacije (tj. logičke posledice tekuće parcijalne valuacije u
teoriji). Pritom, u standardnom CDCL(T) algoritmu nema smisla ispitivati posto-
janje propagacija nakon što se otkrije konflikt, već se tada prelazi na objašnjenje
konflikta i vraćanje unazad. Zbog toga su procedure odlučivanja u teorijskim rešava-
čima tako dizajnirane da ne proveravaju postojanje teorijskih propagacija u slučaju
da je već utvrdjen konflikt u teoriji. Sa druge strane, u slučaju ugradnje lokalne pre-
trage, potrebno je obezbediti da teorijski rešavači nastave sa otkrivanjem teorijskih
propagacija, ignorišući pritom postojanje konflikta. Ovaj proces se obavlja dok se
valuacija ne kompletira, nakon čega se nad njom pokreće lokalna pretraga. Otkriva-
nje teorijskih propagacija u ovoj fazi je važno, jer želimo da dobijena valuacija bude
što je moguće više usaglašena sa logičkim zakonitostima koje važe u teoriji.

Sledeći veliki problem se javlja prilikom izlaska iz lokalne pretrage kada je po-
trebno interne strukture podataka teorijskih rešavača vratiti na stanje koje su imale
pre početka lokalne pretrage, kako bismo mogli da nastavimo sa radom CDCL(T)
algoritma tamo gde smo stali. Najelegantnije rešenje je da najpre vratimo teorij-
ske rešavače na stanje koje su imali na nultom nivou (tj. da ih restartujemo), a

22

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

da zatim, koristeći prethodno sačuvane literale odlučivanja, uz primenu propagaci-
ja ponovo formiramo odgovarajuće stanje struktura podataka. Naravno, ne postoji
garancija da će propagacije biti izvršene istim redosledom niti sa identičnim obja-
šnjenjima, ali to nije od suštinskog značaja za korektnost algoritma. Drugo rešenje
bi bilo čuvanje internih struktura teorijskih rešavača, što bi bilo previše skupo. U
ovom radu, mi smo se odlučili za prvi pristup.

Postupak ugradnje lokalne pretrage u CDCL(T) algoritam prikazan je u algorit-
mu 6.

23

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Algoritam 6 CDCL(T) sa ugrađenom lokalnom pretragom
1: dl Ð 0;
2: αÐ 0;
3: α_longestÐ 0;
4: check_conflictÐ true
5: while true do
6: Propagation; //algoritam 7
7: if IsCompleteTrailpα, F q then
8: break;
9: end if

10: if (|α|

|V |
ą p OR |α|

|α_longest|
ą q) then

11: αcopy Ð α;
12: check_conflictÐ false;
13: pα, dlq Ð completeTrailpF, α, dlq; //algoritam 8
14: β Ð α;
15: Restart;
16: flipÐ 0;
17: while MAX_FLIP ą flip do
18: if LocalSearchpβ, terminate_conditionq then
19: for pi “ β.indexOfFirstLevelpq; i ă β.sizepq; iÐ i` 1q do
20: αÐ α Y decisionpβrisq
21: end for
22: Propagation;
23: if conf = CONFLICT then
24: F Ð F Y␣β;
25: Restart;
26: continue;
27: else
28: return SAT ;
29: end if
30: end if
31: end while
32: Restart;
33: αÐ αcopy;
34: check_conflictÐ true;
35: Propagation; //algoritam 7
36: end if
37: Updatepα_longest_LS, α_latest_LS, α_best_LSq;
38: decisionpF, α, dlq; //algoritam 9
39: end while
40: return SAT ;

24

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Algoritam 7 Propagation

1: pα, confq Ð UnitPropagationpF, α, check_conflictq;
2: iÐ 0;
3: while i ă num_t_solvers OR conf “ CONFLICT do
4: pα, confq Ð TheoryPropagationpF, α, iq;
5: iÐ i` 1;
6: end while
7: if conf “ CONFLICT AND check_conflict “ true then
8: if dl “ 0 then
9: return UNSAT ;

10: end if
11: plearned_clause, blq Ð AnalyzeTheoryConflictpconf, iq;
12: F Ð F Y tlearned_clauseu;
13: α_longestÐ maxpα_longest, αq;
14: Backtrackpα, blq, dl Ð bl;
15: continue;
16: end if

Algoritam 8 completeTrailpF, α, dlq

1: while α is not complete do
2: pα, confq Ð UnitPropagationpF, α, check_conflictq;
3: iÐ 0;
4: while i ă num_t_solvers OR conf “ CONFLICT do
5: pα, confq Ð TheoryPropagationpF, α, iq;
6: iÐ i` 1;
7: end while
8: decisionpF, α, dlq //algoritam 9
9: end while

10: return pα, dlq;

Algoritam 9 decisionpF, α, dlq

1: decision_var Ð ChooseDecisionV ariablepα, F q;
2: dl Ð dl ` 1;
3: αÐ α Y tdecision_var “ TRUE{FALSEu;
4: return pα, dlq;

25

GLAVA 6. UGRADNJA LOKALNE PRETRAGE U CDCL(T) ALGORITAM

Na početku algoritma se vrši iscrpna propagacija (jedinična i teorijska). Taj deo
koda je smešten u algoritam 7 radi preglednosti. U slučaju da dođe do konflikta
ulazi se u analizu konflikta, generisanje klauze povratnog skoka i vraćanje unazad.
Ukoliko nije došlo do konflikta, pre dodavanja novog literala odlučivanja (algoritam
9) proveravaju se uslovi za ulazak u lokalnu pretragu na liniji 10. Uslovi koji treba
da budu ispunjeni su detaljno izloženi u poglavlju 5.1.

Kada se uslovi postignu, kreira se kopija trenutne parcijalne valuacije (označena
sa α_copy u algoritmu). Ova kopija neće sadržati sve literale parcijalne valuacije,
već samo one sa nultog nivoa, kao i literale odlučivanja. Ove informacije su dovoljne
da nakon lokalne pretrage teorijske rešavače vratimo u pređašnje stanje, kao i da
rekonstruišemo parcijalnu valuaciju α.

Originalna parcijalna valuacija se proširuje do potpune valuacije i tokom tog
procesa pokreće se propagacija, kako jedinična, tako i teorijska, kao i proces odabira
literala odlučivanja (algoritam 8). Takođe, u tom koraku se konflikti ignorišu, bez
obzira na to da li potiču iz klauza ili iz teorije. Ovo je tehnički omogućeno sa
indikatorom check_conflict koji se postavlja na false pre početka gore navedenog
procesa, dok se pri izlasku iz lokalne pretrage indikator vraća na true (linija 33).
Potpuna valuacija se kopira u novu promenljivu β (beta trag) na koju će se primeniti
lokalna pretraga, a glavna valucija se restartuje (vraća na nulti nivo odlučivanja).
Prilikom restartovanja, strukture podataka svih teorijskih rešavača se takođe vraćaju
na stanje u kom su bile na nultom nivou odlučivanja.

Lokalna pretraga se izvodi po već objašnjenom principu, uz prilagođavanje pro-
cesa u slučaju pronalaska potencijalno tačne valuacije. Tada se na glavni trag dodaju
literali sa dobijenog beta traga (kao literali odlučivanja), a zatim za tako kompleti-
ranu valuaciju teorijski rešavači proveravaju postojanje konflikata u teorijama. Ako
nijedan teorijski rešavač ne prijavi konflikt imamo zadovoljavajuću valuaciju. Sa
druge strane, ako neki od teorijskih rešavača prijavi konflikt, ne ulazi se u objašnja-
vanje konflikta, već se beta trag negira i dodaje u skup naučenih klauza, nakon čega
se postupak lokalne pretrage nastavlja.

Nakon završetka petlje lokalne pretrage, glavni trag se ponovo restartuje, a ranije
sačuvani literali odlučivanja se dodaju na trag jedan po jedan, praćeni iscrpnom
propagacijom, kako bi se vratilo pređašnje stanje rešavača.

26

Glava 7

Implementacija i evaluacija

U prvom poglavlju ove glave biće prikazana implementacija tehnike ugradnje
lokalne pretrage u CDCL(T) algoritam. Tehnika je implementirana u okviru SMT
rešavača ArgoSMT [3], u programskom jeziku C++, i javno je dostupna 1. U drugom
poglavlju su predstavljeni rezultati evaluacije različitih konfiguracija modifikovanog
rešavača, kao i originalnog, radi poređenja.

7.1 Implementacija

Centralni deo implementacije nalazi se u klasi Solver, koja predstavlja osnovnu
komponentu ArgoSMT rešavača. Ova klasa implementira metodu solvepq, u kojoj se
izvršava glavna petlja algoritma CDCL(T). Tokom rada, pozivaju se procedure koje
redom sprovode propagaciju, detekciju konflikata, objašnjavanje propagiranih lite-
rala i donošenje odluka. Konkretno, klasa sadrži metode poput apply_propagatepq,
apply_conflictpq, apply_explainpq i apply_decidepq, od kojih svaka implementi-
ra jedan od osnovnih koraka CDCL(T) algoritma i menja interno stanje rešavača.
Metode relevantne za ovaj rad biće prikazane u tabeli 7.1. Na ovaj način se gradi
struktura pretrage, rešavaju konflikti i ažurira trag sa odgovarajućim literalima.

1https://github.com/dijanaalanovic/Master/blob/main/argosmt-master-moj

27

https://github.com/dijanaalanovic/Master/blob/main/argosmt-master-moj

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Tabela 7.1: Metode klase Solver
Metod Opis

apply_decideplq Primenjuje pravilo grananja za literal l koje podrazume-
va postavljanje literala na trag, ako prethodno trag ne
sadrži njega ili njegovu negaciju.

apply_propagatepl, iq Primenjuje pravilo jedinične propagacije ili teorijske za
literal l i teoriju sa indeksom i (i “ 0 za jediničnu pro-
pagaciju).

apply_conflictpconf, iq Poziva se kada se prepozna konflikt i s tim započinje
analiza konflikta i formiranje klauze povratnog skoka (
i “ 0 u slučaju iskaznog konfikta).

apply_explainpl, expl, iq Izvedeni literal l iz skupa objašnjenja konflikta se zame-
njuje svojim objašnjenjem expl za teoriju sa indeksom i
(i “ 0 za literale izvedene jediničnom propagacijom).

apply_restartpq Restartuje trag na nulti nivo kao i stanja teorijskih re-
šavača kako bi se izbeglo zapadanje u neperspektivne
grane prostora pretrage.

Pošto smo pojasnili referentne metode klase Solver, naredni korak je razmatra-
nje detalja implementacije lokalne pretrage, koja je takođe deo ove klase i imple-
mentirana je kroz metodu local_searchpq. U okviru iste klase dodata je i metoda
chooseV ariable_and_flipp...q, koju poziva local_searchpq nad odabranom klau-
zom. Njena uloga je da sprovede logiku izbora pogodnog literala i izvrši promenu
njegovog polariteta.

Svaki teorijski rešavač (uključujući i specijalni rešavač zadužen za rezonova-
nje nad klauzama, tj. za jediničnu propagaciju) poseduje implementiranu meto-
du check_and_propagatep...q, koja se u glavnoj petlji metode solvepq poziva radi
provere konflikata i sprovođenja propagacije u teorijama. U slučaju otkrivanja kon-
flikta (propagacije) u teoriji, ova metoda poziva metodu apply_conflictpq (odnosno
apply_propagatepq) klase Solver. Za potrebe lokalne pretrage je napravljeno njeno
preopterećenje sa dodatim argumentom koji predstavlja indikator. Ako je vrednost
indikatora 1 to bi značilo da se funkcija poziva u okviru lokalne pretrage i da bi
trebalo ignorisati eventualnu prijavu konflikata i njihovo objašnjavanje. U tu svrhu
se indikator propagira kroz sve metode teorijskih rešavača gde imamo mogućnost
prijave konflikta. Takođe, ovaj indikator nam govori da li treba pozvati metodu
apply_conflictpq u slučaju otkrivanja konflikta u teoriji, ili taj konflikt treba igno-
risati i nastaviti sa propagacijama.

Metoda apply_restartpq se koristi u metodi lokalne pretrage na više mesta. Prvo

28

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

nailazimo na nju prilikom restartovanja traga nakon kopiranja u radni beta trag
kako bi stanje teorijskih rešavača bilo vraćeno na stanje iz nultog nivoa odlučivanja.
Sledeće jako bitno mesto je kada se naiđe na potencialno tačnu parcijalnu valuaciju
u beta tragu. Literali sa beta traga se dodaju kao literali odlučivanja i pokreće se
propagacija (kod 7.1). Ako se prijavi konflikt pokreće se metoda restartovanja koja
bi vratila stanje rešavača na stanje pre dodavanja literala sa beta traga i nastavlja se
sa traženjem potencijalno tačne parcijalne valuacije sa kojom bi se proces ponovio.
Sledeće pokretanje je pri izlasku iz lokalne pretrage u slučaju da zadovoljavajuća
valuacija nije pronađena, kada je potrebno vratiti se na stanje rešavača pre ulaska
u lokalnu pretragu (kod 7.2).

Beta trag koji predstavlja kopiju potpune valuacije nad kojom se primenjuje
lokalna pretraga je definisan kao neuređen skup radi lakše pretrage literala.

Kod 7.1: Propagacija pozvana u okviru lokalne pretrage radi provere potencijalno
zadovoljavajuće valuacije.

1 unsigned i = 0;

2 do {

3 _state_changed = false;

4 _theory_solvers[i]->check_and_propagate(layer , 1);

5 // Second parameter is local search flag

6

7 if(_state_changed && (i != 0 || layer != 0)){

8 i = layer = 0;

9 }

10 else{

11 i++;

12 }

13 if(_conflict_set.is_conflict ()){ // conflict

14 apply_restart ();

15 ind_for_theory_solvers = 1;

16 break;

17 }

18 }

19 while(i < _theory_solvers.size());

29

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Kod 7.2: Nije pronađena zadovoljavajuća valuacija. Vraćanje internih struktura po-
dataka teorijskih rešavača na stanje pre ulaska u lokalnu pretragu.

1 apply_restart ();

2 _conflict_set.reset_conflict ();

3 for(unsigned j = 0; j < alpha_copy.size(); j++){

4 unsigned ind = 0;

5 for(unsigned k = lvl_0; k < _trail.size(); k++){

6 if(alpha_copy[j] == _trail[k] or get_literal_data(

alpha_copy[j])->get_opposite () == _trail[k]){

7 ind = 1;

8 break;

9 }

10 }

11 if (ind == 1)

12 continue;

13

14 apply_decide(alpha_copy[j]);

15 // After each decide step , propagation is performed

16 unsigned i = 0;

17 layer = num_of_layers -1;

18 do

19 {

20 _state_changed = false;

21 _theory_solvers[i]->check_and_propagate(layer);

22

23 if(_state_changed && (i != 0 || layer != 0))

24 i = layer = 0;

25 else

26 i++;

27

28 }

29 while(! _conflict_set.is_conflict () && i < _theory_solvers.

size());

30 }

30

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

7.2 Evaluacija

Evaulacija predstavljene tehnike rađena je na računaru sa četiri AMD Opteron
6168 1.6GHz procesora sa po 12 jezgara (tj. 48 jezgara ukupno), i 94GB RAM-a.
Korpus instanci nad kojima je evaluacija rađena je iz SMT-LIB biblioteke [3] sa
ukupnim brojem od 1083 instanci. Prilikom evaluacije, vremensko ograničenje bilo
je 1200 sekundi po instanci, dok je memorijsko ograničenje bilo implicitno određeno
hardverskim ograničenjima samog sistema.

Rezultati će biti predstavljeni za nekoliko najboljih vrednosti koeficijenata, a to
su pomenuti p, q i ograničenje broja iteracija petlje lokalne pretrage, pri čemu će se
za svaku kombinaciju analizirati broj rešenih instanci, prosečno vreme rešavanja i
vreme trajanja same lokalne pretrage, a nakon toga će se najbolji rezultat uporediti
sa rezultatom originalnog rešavača.

Prvi koeficijent koji se analizira je p i za njega su izabrane tri vrednosti sa
najboljim rezultatima koji se mogu naći u tabeli 7.2.

31

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Tabela 7.2: Rezultati postignuti za različite vrednosti koeficienta p. Vremena su
izražena u sekundama.

Vrednost p 0.40 0.45 0.50
Br. rešenih instanci 112 111 119

Srednje vreme rešavanja 3 2163.71 2163.87 2150.07
Srednje vreme rešavanja po instanci 4 115.14 96.12 125.45

Srednje vreme lokalne pretrage 90.52 60.13 82.9

Podsetimo se da se koeficijent p koristi u uslovu za ulazak u lokalnu pretragu, tj.
da bi se započela lokalna pretraga p treba da bude manje od odnosa dužine parci-
jalne valuacije i ukupnog broja promenljivih. Veće vrednosti parametra p pomeraju
prag za ulazak u lokalnu pretragu, što dovodi do toga da se algoritam ređe oslanja
na stohastične komponente i više na sistematičnu pretragu. Sa druge strane, manje
vrednosti p omogućavaju češće aktiviranje lokalne pretrage, što povećava mogućnost
pronalaska rešenja u slučajevima gde CDCL(T) sam po sebi zapada u neperspek-
tivne grane. Najbolji rezultati postignuti su za vrednost p “ 0.5 za koju je rešeno
najviše instanci, uz relativno stabilno prosečno vreme rešavanja.

Koeficijent q se nalazi u drugom delu uslova za ulazak u lokalnu pretragu i
on treba da bude manji od odnosa dužine trenutne parcijalne valuacije i najduže
parcijalne valuacije do tada nađene. U tabeli 7.3 prikazane su 4 različite vrednosti
koeficijenta sa najboljim rezultatima.

Tabela 7.3: Rezultati dobijeni za različite vrednosti koeficienta q. Vremena su izra-
žena u sekundama.

Vrednost q 0.87 0.9 0.93 0.97
Br. rešenih instanci 114 119 114 112

Srednje vreme rešavanja 2158.95 2150.07 2159.58 2162.4
Srednje vreme rešavanja po instanci 110 125.45 116.02 125.45

Srednje vreme lokalne pretrage 57.34 82.9 52.59 51.68

Rezultati pokazuju da vrednost q “ 0.9 donosi najbolju kombinaciju između
broja rešenih instanci i prosečnog vremena. Suviše niska vrednost q vodi ka pre-
uranjenom uključivanju lokalne pretrage, dok previsoka vrednost produžava vreme
čekanja do njenog aktiviranja i smanjuje efikasnost tehnike. Ovo potvrđuje hipotezu
da lokalna pretraga najbolje funkcioniše kada se aktivira tek nakon što CDCL(T)
obezbedi dovoljno „dobru“ parcijalnu valuaciju.

3Odnos ukupnog vremena i ukupnog broja istanci
4Vreme rešavanja istance za koju je nađeno rešenje

32

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

Poslednja analiza odnosi se na koeficijent koji predstavlja ograničenje broja itera-
cija petlje lokalne pretrage, u nastavku MAX_FLIPS. On predstavlja maksimalan
broj promena polariteta literala tokom izvršavanja funkcije lokalne prtrage. U tabeli
7.4 je dat prikaz rezultata za različite vrednosti koeficijenta.

Tabela 7.4: Rezultati dobijeni za različite vrednosti parametra MAX_FLIPS. Vre-
mena su izražena u sekundama.

Vrednost MAX_FLIPS 500 450 400
Br. rešenih instanci 114 113 119

Srednje vreme rešavanja 2158.28 2160.27 2150.07
Srednje vreme rešavanja po instanci 103.71 102.28 125.45

Srednje vreme lokalne pretrage po instanci 46.24 45.43 82.9

Prevelik broj iteracija može uzrokovati bespotrebno trošenje vremena na lo-
kalnu pretragu bez garancije uspeha, dok premali broj iteracija ograničava njenu
moć da izbegne lokalne minimume. Najbolji rezultati postignuti su za vrednost
MAX_FLIPS “ 400, za koju je dobijena najbolja kombinacija broja rešenih in-
stanci i vremena izvršavanja.

Najbolji rezultat je dobijen za vrednosti p “ 0.5, q “ 0.9 i MAX_FLIPS “ 400,
stoga se vrši njegovo poređenje sa rezultatom originalnog rešavača.

Vrednosti originalnog rešavača se mogu naći u tabeli 7.5.

Tabela 7.5: Rezultati poređenja izvršavanja rešavača ArgoSMT sa i bez lokalne
pretrage. Vremena su izražena u sekundama.

Rešavači ArgoSMT ArgoSMT_local_search
Br. rešenih instanci 616 119

Br. zadovoljivih instanci 432 62
Srednje vreme rešavanja 1105.421 2150.07

Srednje vreme rešavanja po instanci 124 125.45

Iz datog se zaključuje da je originalni rešavač rešio 616, a modifikovani 119 od
ukupno 1083 istance, od kojih je 591 zadovoljivih, 373 nezadnovoljivih, a ostale
nerešene. Prevedeno u procente, originalni rešavač je rešio 56.88% instanci dok je
modifikovana verzija rešila 10.99%.

Ako se uđe u dublju analizu vremena 119 rešenih instanci dolazi se do sledećeg:

• 17.65% (21 instanca) - rešene su brže u odnosu na original,

• 59.66% (71 instancu) - vreme rešavanja se razlikuje za manje od 1s,

33

GLAVA 7. IMPLEMENTACIJA I EVALUACIJA

• 17.65% (21 instancu) - razlika u vremenu rešavanja se nalazi u intervalu od 1s
do 100s,

• 5% (6 instanci) - razlika u vremenu rešavanja je veća od 100s.

Iako je originalni ArgoSMT rešio znatno veći broj instanci, modifikovani rešavač
sa ugrađenom lokalnom pretragom pokazuje određene prednosti. Analiza rešenih
instanci otkriva da je skoro 18% slučajeva rešeno brže nego kod originala, dok se kod
dodatnih 60% vreme razlikuje za manje od 1s. Ovo sugeriše da hibridni pristup, iako
trenutno inferioran u ukupnom broju rešenja, poseduje potencijal za optimizaciju i
poboljšanje performansi.

Glavni nedostatak modifikovanog rešavača jeste drastičan pad ukupne uspešnosti
u odnosu na originalni ArgoSMT. Međutim, činjenica da je kod značajnog broja
instanci vreme rešavanja uporedivo ili bolje ukazuje da se daljim unapređenjem
mehanizama integracije lokalne pretrage može postići veća konkurentnost.

Vidimo da glavna ideja, odnosno upotreba lokalne pretrage, ima značajan poten-
cijal za dalje unapređivanje. Deo algoritma koji najviše utiče na vreme izvršavanja
lokalne pretrage jeste izbor promenljive čijom promenom polariteta se neće pove-
ćati broj nezadovoljenih klauza (algotitam 4 - slobodan potez). Konkretno, kada
literal klauze prilikom promene polariteta postane netačan, mora se proveri da li
među preostalim literalima te klauze postoji bar jedan koji će u odnosu na trenutni
trag održati klauzu tačnom. Ova provera se sprovodi za sve literale izabrane klau-
ze u svim klauzama formule i predstavlja usko grlo u performansama. Potencijalna
unapređenja mogu se ostvariti ubrzavanjem ili modifikovanjem ovog procesa, na
primer izborom efikasnijih struktura podataka. Dalje unapređenje može se postići
uvođenjem tehnika mašinskog učenja, koje bi omogućile pozivanje mehanizma lo-
kalne pretrage u situacijama u kojima to može biti povoljno za ukupne performanse
rešavača.

34

Glava 8

Zaključak

U okviru ovog istraživačkog rada razmatrana je mogućnost kombinovanja eg-
zaktnih algoritama i algoritama lokalne pretrage u okviru SAT i SMT rešavača,
sa ciljem poboljšanja njihove efikasnosti. U neophodnoj meri dat je opis CDCL i
CDCL(T) algoritma, kao i dva popularna algoritma lokalne pretrage za rešavanje
SAT problema, GSAT i WalkSAT. Posebna pažnja posvećena je postupku ugradnje
lokalne pretrage u CDCL algoritam, rađenom na osnovu referentnog rada [10], dok
je centralni doprinos ovog rada adaptacija tehnike u kontekstu SMT rešavača i njena
implementacija u okviru rešavača ArgoSMT.

Eksperimentalna evaluacija pokazala je da, iako originalni rešavač značajno nad-
mašuje modifikovani po broju rešenih instanci, postoji određeni broj slučajeva gde je
modifikovani pristup dao komparativne rezultate ili čak nadmašio osnovnu verziju.
Posebno je značajan podatak da je kod skoro 77% rešenih instanci vreme rešava-
nja bilo približno kao kod originalnog rešavača, što ukazuje na potencijal tehnike i
otvara prostor za dodatne optimizacije.

Kao pravac za dalja istraživanja izdvajaju se: unapređenje komunikacije između
lokalne pretrage i teorijskih rešavača, ispitivanje drugih heuristika i kriterijuma za
ulazak u lokalnu pretragu, kao i integracija naprednijih algoritama lokalne pretrage.
Pored toga, zanimljivo bi bilo ispitati primenu kombinovanog pristupa i u drugim
domenima.

Na osnovu svega izloženog, može se zaključiti da iako trenutni rezultati ne donose
neposredna poboljšanja u odnosu na originalni rešavač, sama ideja kombinovanja
egzaktnih i stohastičkih algoritama predstavlja perspektivno polje istraživanja koje
uz dalja usavršavanja može doprineti razvoju efikasnijih hibridnih rešavača.

35

Bibliografija

[1] SMT-LIB. on-line at: http://smtlib.cs.uiowa.edu/.

[2] Marin Heule Armin Biere and Hans van Maaren. Incomplete algorithms. In
Handbook of satisfiability.IOS press, pages 187–189, 2019.

[3] Milan Banković. Smt rešavač argosmt. 2016. on-line at: https://github.com/
milanbankovic/argosmt.

[4] Stephen A. Cook. The complexity of theorem-proving procedures. In Procee-
dings of the third annual ACM symposium on Theory of computing – New York,
NY, United States, 3th May, 1971, pages 151–158.

[5] Rivest L.Ronald Stein Clifford Cormen H. Thomas, Leiserson E. Charles. Np-
completeness. In Introduction to algorithms 4rd ed., pages 1343–1422, 2022.

[6] Ines Lynce Joao Marques-Silva and Sharad Malik. Conflict-driven clause lear-
ning sat solvers. In Handbook of satisfiability.IOS press, pages 131–155, 2009.

[7] Leonid Levin. Universal’nye perebornye zadachi [universal search problems](in
russian). In Problems of Information Transmission – Russia, 1973, Poceedings
(9 (3): pp. 265–266).

[8] Ashish Sabharwal Lukas Kroc1 and Bart Selman1. An empirical study of op-
timal noise and runtime distributions in local search. In Pro. 13th Int. Conf.
on Theory and Applications of Satisfiability Testing, Edinburgh, Scotland, 34.
July 2010.

[9] Ying Zhao Lintao Zhang Matthew W. Moskewicz, Conor F. Madigan and Sha-
rad Malik. Chaff: Engineering an efficient sat solver. In Annual ACM IEEE
Design Automation Conference, pages 530–535, 2001.

36

http://smtlib.cs.uiowa.edu/
https://github.com/milanbankovic/argosmt
https://github.com/milanbankovic/argosmt

BIBLIOGRAFIJA

[10] Cai Shaowei and Xindi Zhang. Deep cooperation of cdcl and local search for
sat. In Theory and Applications of Satisfiability Testing – SAT 2021, 24th
International Conference, Barcelona, Spain, July 5-9, 2021, pages 64–81, 2021.

37

Biografija autora

Dijana Alanović rođena je 18.04.1998. u Šapcu. Odrasla je u obližnjem naselju
pod imenom Zminjak gde je 2013. godine završila osnovnu školu „Jovan Cvijić”
kao nosilac Vukove diplome. Nakon toga je upisala srednju medicinsku školu „Dr
Andra Jovanović” u Šapcu i završila je 2017. godine, takođe kao nosilac Vukove
diplome. Odmah po završetku srednje škole, upisala je osnovne akademske studije
matematike na Matematičkom fakultetu u Beogradu, pod programom „Računarstvo
i informatika”. Diplomirala je u roku 2021. godine sa prosekom 8.05 i stekla zvanje
Diplomirani matematičar. Obrazovanje je nastavila odmah na istom fakultetu, gde
u oktobru 2021. godine upisuje master studije matematike, pod istim studijskim
programom. Tokom studiranja se zapošljava kao softvreski inženjer u firmi Logit
Solution.

	Uvod
	Osnove
	Egzaktni algoritmi
	CDCL algoritam
	Algoritam CDCL(T)

	SAT rešavači zasnovani na lokalnoj pretrazi
	GSAT
	WalkSAT

	Ugradnja lokalne pretrage u CDCL algoritam
	Opis postupka ugradnje lokalne pretrage u CDCL algoritam
	Uticaj lokalne pretrage na heuristike grananja CDCL algoritma

	Ugradnja lokalne pretrage u CDCL(T) algoritam
	Implementacija i evaluacija
	Implementacija
	Evaluacija

	Zaključak
	Bibliografija

